Please wait a minute...
金属学报  2017, Vol. 53 Issue (12): 1611-1619    DOI: 10.11900/0412.1961.2017.00022
  本期目录 | 过刊浏览 |
超超临界电站用镍基合金热加工过程的再结晶机理
韦康, 张麦仓(), 谢锡善
北京科技大学材料科学与工程学院 北京 100083
Recrystallization Mechanisms in Hot Working Processes of a Nickel-Based Alloy for Ultra-Supercritical Power Plant Application
Kang WEI, Maicang ZHANG(), Xishan XIE
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

韦康, 张麦仓, 谢锡善. 超超临界电站用镍基合金热加工过程的再结晶机理[J]. 金属学报, 2017, 53(12): 1611-1619.
Kang WEI, Maicang ZHANG, Xishan XIE. Recrystallization Mechanisms in Hot Working Processes of a Nickel-Based Alloy for Ultra-Supercritical Power Plant Application[J]. Acta Metall Sin, 2017, 53(12): 1611-1619.

全文: PDF(14986 KB)   HTML
摘要: 

以一种超超临界电站管材用镍基合金为研究对象,结合管材的冷热加工过程及系列压缩热变形与固溶退火实验,利用OM和TEM等手段分析了该合金热加工过程中的动、静态再结晶行为。结果表明:该合金的动态再结晶过程是以晶界弓弯方式形核的非连续动态再结晶为主,静态再结晶则以应变诱导晶界迁动形核机制为主。此外,动态再结晶与静态再结晶过程中产生的不同形态的台阶晶界,其本质是实现表面对低指数面的偏离,保证更多晶界面为低能密排面,以使晶界界面能降低;其形态取决于晶界面的晶体学关系以及晶界位错的Burgers矢量;台阶晶界的存在还可以促进晶界迁移,加速再结晶过程。而且,在再结晶过程进行完全后,台阶晶界仍部分保留,以降低界面能并继续促进后续的晶粒长大过程。

关键词 镍基合金再结晶台阶晶界    
Abstract

Nickel-based alloy is a good choice for materials used in ultra-supercritical power plant, which is subjected to high temperature about 700 ℃ and high pressure in service. In order to meet the requirements above, a nickel-based alloy was designed and the tubes were successfully manufactured. Based on the hot/cold working processes of tube components of the nickel-based alloy, microstructural evolution, especially the recrystallization mechanisms during hot working processes of the alloy were systematically investigated by using a series of hot compression tests, solution annealing tests, OM and TEM analyses. The results showed that dynamic recrystallization was dominated by discontinuous dynamic recrystallization mechanism involving grain boundary bulging, whereas the nucleation mechanism with strain inducing grain boundary migration was the driving force of static recrystallization. In addition, the essence of different forms of step grain boundary producing during dynamic recrystallization and static recrystallization was to make the surface deviate from low index surface, which could ensure more interface to be low energy close-packed surface, so that the energy of grain boundary interface would be reduced. The morphology of step grain boundary depended on the crystallographic relationship of crystal interface and the Burgers vector of grain boundary dislocation. Moreover, the presence of step grain boundary could also promote grain boundary migration and accelerate the recrystallization process. When the recrystallization process was completed, step grain boundaries still remained partially to minimize interfacial energy and continue to promote subsequent grain growth processes.

Key wordsnickel-based alloy    recrystallization    step grain boundary
收稿日期: 2017-01-16     
ZTFLH:  TG146.1  
作者简介:

作者简介 韦 康,男,1992年生,硕士

图1  热模拟实验示意图
图2  锻态棒坯纵截面的组织
图3  不同热变形条件下合金的组织
图4  不同热变形条件下合金的TEM像
图5  冷轧态管材纵截面的组织
图6  不同固溶退火条件后合金的组织形貌
图7  不同固溶退火条件下合金的位错组态
图8  合金在不同热变形过程中产生的台阶晶界
图9  合金在不同固溶过程中产生的台阶晶界
图10  自由表面中平台-台阶-扭折模型示意图
图11  fcc结构材料中的晶界位错示意图
图12  经固溶及时效处理后合金的晶界特征
[1] Guo J T.Materials Science and Engineering for Superalloys [M]. Vol.1, Beijing: Science Press, 2008: 1(郭建亭. 高温合金材料学 [M]. 上册, 北京: 科学出版社, 2008: 1)
[2] Doherty R D, Hughes D A, Humphreys F J, et al.Current issues in recrystallization: A review[J]. Mater. Sci. Eng., 1997, A238: 219
[3] Humphreys F J, Hatherly M.Recrystallization and Related Annealing Phenomena[M]. 2nd Ed., Amsterdam: Elsevier, 2004: 169
[4] Zahiri S H, Hodgson P D.The static, dynamic and metadynamic recrystallisation of a medium carbon steel[J]. Mater. Sci. Technol., 2004, 20: 458
[5] Sakai T, Belyakov A, Kaibyshev R, et al.Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions[J]. Prog. Mater. Sci., 2014, 60: 130
[6] Singh R P, Hyzak J M, Howson T E, et al.Recrystallization behavior of cold rolled alloy 718 [A]. Superalloys 718, 625 and Various Derivatives[C]. Warrendale, PA: TMS, 1991: 205
[7] Wang L, Wang S A, Liu Y, et al. Dynamic recrystallization behavior of GH4586 superalloy during hot compression [J]. Mater. Sci. Forum, 2010, 638-642: 2357
[8] Liu Y X, Lin Y, Li H B, et al.Study of dynamic recrystallization in a Ni-based superalloy by experiments and cellular automaton model[J]. Mater. Sci. Eng., 2015, A626: 432
[9] Lin Y C, Liu Y X, Chen M S, et al.Study of static recrystallization behavior in hot deformed Ni-based superalloy using cellular automaton model[J]. Mater. Des., 2016, 99: 107
[10] Hirth J P, Pond R C.Steps, dislocations and disconnections as interface defects relating to structure and phase transformations[J]. Acta. Mater., 1996, 44: 4749
[11] Smith W F, Hashemi J.Foundations of Materials Science and Engineering[M]. 5th Ed., New York: McGraw-Hill Education, 2011: 138
[12] Shirdel M, Mirzadeh H, Parsa M H.Abnormal grain growth in AISI 304L stainless steel[J]. Mater. Charact., 2014, 97: 11
[13] Danflou H L, Macia M, Sanders T H, et al.Mechanisms of formation of serrated grain boundaries in nickel base superalloys [A]. Superalloys 1996[C]. Warrendale, PA: TMS, 1996: 119
[14] Kim K J, Ginsztler J, Nam S W.The role of carbon on the occurrence of grain boundary serration in an AISI 316 stainless steel during aging heat treatment[J]. Mater. Lett., 2005, 59: 1439
[15] Kim K J, Hong H U, Nam S W.A study on the mechanism of serrated grain boundary formation in an austenitic stainless steel[J]. Mater. Chem. Phys., 2011, 126: 480
[16] Hong H U, Kim I S, Choi B G, et al.On the mechanism of serrated grain boundary formation in Ni-based superalloys with low γ′ volume fraction [A]. Superalloys 2012[C]. Warrendale, PA: TMS, 2012: 53
[17] Hong H U, Jeong H W, Kim I S, et al.Significant decrease in interfacial energy of grain boundary through serrated grain boundary transition[J]. Philo. Mag., 2012, 92: 2809
[18] Jiang L, Hu R, Kou H C, et al.The effect of M23C6 carbides on the formation of grain boundary serrations in a wrought Ni-based superalloy[J]. Mater. Sci. Eng., 2012, A536: 37
[19] Lim Y S, Kim D J, Hwang S S, et al.M23C6 precipitation behavior and grain boundary serration in Ni-based alloy 690[J]. Mater. Charact., 2014, 96: 28
[20] Wu Y S, Zhang M C, Xie X S.The design and research of a new low cobalt-molybdenum niobium-containing Ni-base superalloy for 700 ℃ advanced ultra-supercritical power plants[J]. Proc. Eng., 2015, 130: 617
[21] Xie X S, Wu Y S, Chi C Y, et al.Superalloys for advanced ultra-super-critical fossil power plant application [A]. Superalloys[M]. Rijeka: InTech, 2015: 51
[22] Li D F, Guo Q M, Guo S L, et al.The microstructure evolution and nucleation mechanisms of dynamic recrystallization in hot-deformed Inconel 625 superalloy[J]. Mater. Des., 2011, 32: 696
[23] Cao Y, Di H S, Zhang J Q, et al.An electron backscattered diffraction study on the dynamic recrystallization behavior of a nickel-chromium alloy (800H) during hot deformation[J]. Mater. Sci. Eng., 2013, A585: 71
[24] Gleiter H.The mechanism of grain boundary migration[J]. Acta Metall., 1969, 17: 565
[25] Gleiter H.Theory of grain boundary migration rate[J]. Acta Metall., 1969, 17: 853
[26] Rae C M F, Smith D A. On the mechanisms of grain boundary migration[J]. Philos. Mag., 1980, 41A: 477
[27] Rajabzadeh A, Legros M, Combe N, et al.Evidence of grain boundary dislocation step motion associated to shear-coupled grain boundary migration[J]. Philos. Mag., 2013, 93: 1299
[28] Bowers M L, Ophus C, Gautam A, et al.Step coalescence by collective motion at an incommensurate grain boundary[J]. Phys. Rev. Lett., 2016, 116: 106102
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[4] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[5] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[6] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[7] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[8] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[9] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[10] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[11] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[12] 姜巨福, 张逸浩, 刘英泽, 王迎, 肖冠菲, 张颖. RAP法制备AlSi7Mg合金半固态坯料研究[J]. 金属学报, 2021, 57(6): 703-716.
[13] 王迪, 王栋, 谢光, 王莉, 董加胜, 陈立佳. Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响[J]. 金属学报, 2021, 57(6): 780-790.
[14] 李彦默, 郭小辉, 陈斌, 李培跃, 郭倩颖, 丁然, 余黎明, 苏宇, 李文亚. GH4169合金与S31042钢线性摩擦焊接头组织及力学性能[J]. 金属学报, 2021, 57(3): 363-374.
[15] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.