Please wait a minute...
金属学报  2020, Vol. 56 Issue (11): 1485-1494    DOI: 10.11900/0412.1961.2020.00110
  本期目录 | 过刊浏览 |
ErSi对铝基储热合金导热系数及相变潜热的影响
朱伟强1, 俞牧知1, 唐旭1, 陈孝阳1, 许征兵1,2(), 曾建民1,2
1 广西大学广西有色金属及特色材料加工重点实验室 南宁 530004
2 广西大学广西生态型铝产业协同创新中心 南宁 530004
Effect of Er and Si on Thermal Conductivity and Latent Heat of Phase Transformation of Aluminum-Based Alloy
ZHU Weiqiang1, YU Muzhi1, TANG Xu1, CHEN Xiaoyang1, XU Zhengbing1,2(), ZENG Jianmin1,2
1 Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, Guangxi University, Nanning 530004, China
2 Center of Ecological Collaborative Innovation for Aluminum Industry in Guangxi, Guangxi University, Nanning 530004, China
引用本文:

朱伟强, 俞牧知, 唐旭, 陈孝阳, 许征兵, 曾建民. ErSi对铝基储热合金导热系数及相变潜热的影响[J]. 金属学报, 2020, 56(11): 1485-1494.
Weiqiang ZHU, Muzhi YU, Xu TANG, Xiaoyang CHEN, Zhengbing XU, Jianmin ZENG. Effect of Er and Si on Thermal Conductivity and Latent Heat of Phase Transformation of Aluminum-Based Alloy[J]. Acta Metall Sin, 2020, 56(11): 1485-1494.

全文: PDF(3184 KB)   HTML
摘要: 

为探究Er、Si对铝基储热合金导热系数和相变储热值的影响,制备了Si的质量分数分别为12%、14%、16%,上述Si含量条件下,Er的质量分数分别为0.2%、0.4%、0.6%、0.8%的合金。根据实验测得的比热容、热扩散系数和密度,通过计算得到合金的导热系数,同时测量了合金的相变潜热,运用理论模型对合金的相变潜热进行计算,通过方差分析Er和Si含量对合金相变潜热的影响。分析结果表明,Er可以有效改善Al-Si合金中的初生Si形态,细化组织;Si含量为16%时,加入0.2%、0.6% Er的合金相变潜热分别为414.8和406.5 J/g。理论模型计算表明,考虑组元固-液相之间的比热容差对熵的贡献时,得到的合金相变潜热较未考虑的计算结果误差更小;对Al-12Si-xEr、Al-16Si-xEr相变潜热理论计算模型进行了修正,修正模型计算得到的合金相变潜热值和实测潜热值更为吻合。方差分析显示,在显著性水平p=0.05的条件下,Si含量对材料相变潜热有显著影响。

关键词 ErSi铝基储热合金导热系数相变潜热    
Abstract

In order to investigate the effect of Er and Si on the thermal conductivity and latent heat of phase transformation of Al-based heat storage alloy, the alloys with Si contents (mass fraction) of 12%, 14% and 16% were prepared. The Er contents of the alloys were 0.2%, 0.4%, 0.6% and 0.8%, respectively. According to the specific heat capacity, thermal diffusivity and density measured by experiments, the thermal conductivity of the alloy was calculated. In addition, the latent heat of phase transformation of alloy was measured and calculated theoretically by using empirical formula. The influence of Er and Si contents on the latent heat of transformation was analyzed by variance. The results show that Er can effectively improve the morphology of primary Si and refine the microstructure in Al-Si alloy. When the content of Si is 16%, the latent heat of the alloy is 414.8 and 406.5 J/g respectively when adding 0.2% and 0.6% Er. When the contribution of the specific heat capacity difference between solid and liquid phases to entropy is considered, the calculated latent heat of phase transformation of the alloy is smaller than that not considered. The theoretical calculation models of the latent heat values of Al-12Si-xEr and Al-16Si-xEr are modified, and the latent heat values calculated by the modified model are more consistent with the measured values.The analysis of variance showed that under the condition of significant level p=0.05, the content of Si has a significant effect on the latent heat of phase transformation of the material.

Key wordsEr    Si    aluminum-based heat storage alloy    thermal conductivity    latent heat of phase transformation
收稿日期: 2020-04-07     
ZTFLH:  TG146.21  
基金资助:国家自然科学基金项目(51961008);国家自然科学基金项目(51401057);“铝合金材料先进加工技术”八桂学者专项经费项目,广西有色金属及特色材料加工重点实验室青年基金项目(GXYSYF1808);广西研究生教育创新计划项目(YCSW2018054)
作者简介: 朱伟强,男,1994年生,硕士生
图1  Er/Al-Si合金显微组织的OM像
图2  Al-16Si-0.6Er合金的SEM像及EDS结果
图3  合金的比热容随温度和Er含量变化曲线
图4  合金的热扩散系数随温度和Er含量变化的折线图
图5  合金的密度
图6  合金的导热系数随温度和Er含量变化的折线图
图7  Al-12Si-xEr、Al-14Si-xEr、Al-16Si-xEr合金的相变潜热实测值与计算值
ElementTmMΔScp / (J·mol-1·K-1)
Kg·mol-1J·g-1·K-1Solid stateLiquid state
Al93427.00.42525.329.16
Si168528.11.06126.027.20
Er1795167.20.43828.136.60
表1  Al、Si、Er元素的热物性数据[26]
SourceSSdfσFSig.
Calibration model6172.87761028.81311.1410.002
Intercept2082088.81712082088.81722546.3610.000
Content of Si5445.79722722.89929.4860.000
Content of Er727.0804181.7701.9680.193
Error738.776892.347
Total2089000.47015
表2  相变潜热随Si、Er含量变化方差分析系数表
[1] Hua J S, Jiao Y, Wang J H. Study on properties of Al-Si/Al2O3 composite phase change material for thermal energy storage [J]. Hot Work. Technol., 2012, 41(8): 72
[1] (华建社, 焦 勇, 王建宏. Al-Si/Al2O3高温复合相变蓄热材料的研究 [J]. 热加工工艺, 2012, 41(8): 72)
[2] Lu Z Q, Zhu H W, Han X L, et al. Integrated modelling and algorithm of material delivery and line-side storage for aircraft moving assembly lines [J]. Int. J. Prod. Res., 2019, 57: 5842
[3] Flury S, Dulla F A, Peutzfeldt A. Repair bond strength of resin composite to restorative materials after short- and long-term storage [J]. Dent. Mater., 2019, 35: 1205
[4] Liu L F, Chen J Y, Qu Y, et al. Preparation and thermal properties of low melting point alloy/expanded graphite composite phase change materials used in solar water storage system [J]. Sol. Energy Mater. Sol. Cells, 2019, 201: 110112
[5] Perraudin D Y S, Binder S R, Rezaei E, et al. Phase change material systems for high temperature heat storage [J]. Chimia (Aarau), 2015, 69: 780
[6] Zhou J, Li H X, Yu Y F, et al. Research on aluminum component change and phase transformation of TiAl-based alloy in electron beam selective melting process under multiple scan [J]. Intermetallics, 2019, 113: 106575
[7] Zhang G C, Xu Z, Chen Y F, et al. Progress in metal-based phase change materials for thermal energy storage applications [J]. Energy Storage Sci. Technol., 2012, 1: 74
[7] (张国才, 徐 哲, 陈运法等. 金属基相变材料的研究进展及应用 [J]. 储能科学与技术, 2012, 1: 74)
[8] Zhang H L, Fang X D, Zhao Y J. Progress in phase change materials and technologies [J]. Mater. Rev., 2014, 28(13): 26
[8] (张贺磊, 方贤德, 赵颖杰. 相变储热材料及技术的研究进展 [J]. 材料导报, 2014, 28(13): 26)
[9] Toyoda N K, Watanabe K J, Watanabe M, et al. Studies on a heat storage container with phase change material [J]. Trans. Jpn Soc. Refrig. Air Cond. Eng., 2012, 1: 13
[10] Chen G S, Wang B Q, Zhang R Y, et al. Research of thermal storage characteristics of Al-Si alloy as PCM [J]. Mater. Res. Appl., 2010, 4: 255
[10] (陈观生, 王波群, 张仁元等. 金属相变储热材料铝硅合金储热特性研究 [J]. 材料研究与应用, 2010, 4: 255)
[11] Sheng N, Zhu C Y, Saito G, et al. Development of a microencapsulated Al-Si phase change material with high-temperature thermal stability and durability over 3000 cycles [J]. J. Mater. Chem., 2018, 6: 18143
[12] Zhang H T, Wang D T, Qin K, et al. Effect of compound modification and cooling rate on microstructure and mechanical properties of Al-25%Si alloy [J]. Mater. Sci. Forum, 2017, 877: 27
[13] Li Q L, Xia T D, Lan Y F, et al. Effect of rare earth cerium addition on the microstructure and tensile properties of hypereutectic Al-20%Si alloy [J]. J. Alloys Compd., 2013, 562: 25
[14] Zhu S, Qiu L, Wang X M, et al. Effects of Er addition on Microstructure and mechanical properties of Al-12Si alloy [J]. Hot Work. Technol., 2018, 47(18): 78
[14] (朱 胜, 邱 六, 王晓明等. Er添加对Al-12Si铝硅合金组织和力学性能的影响 [J]. 热加工工艺, 2018, 47(18): 78)
[15] Wang L P, Cao G J, Zhang J J, et al. Effect of combined RE-Ba-Sb addition on microstructure and mechanical properties of 4004 aluminum alloy [J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 2236
[16] Li X Y, Lu Y L, Wang J, et al. Effect of rare earth erbium on microstructure and mechanical properties of A356 aluminum alloy [J]. J. Mater. Eng., 2018, 46(1): 67
[16] (李晓燕, 卢雅琳, 王 健等. 稀土Er对A356铝合金微观组织和力学性能的影响[J]. 材料工程, 2018, 46(1): 67)
[17] Fan Y G, Zhang X H, Tang H Q, et al. Influence of RE on mechanical properties of optimized Al-Si casting alloy [J]. Hot Work. Technol., 2012, 41(5): 49
[17] (范应光, 张修海, 汤宏群等. RE对改良铸造铝硅合金力学性能的影响 [J]. 热加工工艺, 2012, 41(5): 49)
[18] Cheng X M, He G, Wu X W. Application and research progress of aluminum-based thermal storage materials in solar thermal power [J]. Mater. Rev., 2010, 24(17): 139
[18] (程晓敏, 何 高, 吴兴文. 铝基合金储热材料在太阳能热发电中的应用及研究进展 [J]. 材料导报, 2010, 24(17): 139)
[19] Inoue A, Bizen Y, Kimura H M, et al. Compositional range, thermal stability, hardness and electrical resistivity of amorphous alloys in Al-Si (or Ge)-transition metal systems [J]. J. Mater. Sci., 1998, 23: 3640
[20] Hu G X, Cai X. Fundamentals of Materials Science [M]. Shanghai: Shanghai Jiaotong University Press, 2000: 232
[20] (胡赓祥, 蔡 珣. 材料科学基础 [M]. 上海: 上海交通大学出版社, 2000: 232)
[21] Raghavan V. Al-Er-Si (aluminum-erbium-silicon) [J]. J. Phase Equilib., 2010, 31: 44
[22] Chen X Z, Sieve B, Henning R, et al. Ln2Al3Si2 (Ln= Ho, Er, Tm): New silicides from molten aluminum—Determination of the Al/Si distribution with neutron crystallography and metamagnetic transitions [J]. Angew. Chem., 1999, 38: 693
[23] Deng C Z, Liu Z Y, Zhou J, et al. Study on thermal stability of 2524 aluminum alloy [J]. Trans. Mater. Heat Treat., 2009, 30(5): 87
[24] Guo C Q. The method of reckoning up titanium alloy density form its element contents [J]. J. Mater. Eng., 1993, (6): 10
[24] (郭超祺. 钛合金元素密度法推导计算合金材料密度的研究 [J]. 材料工程, 1993, (6): 10)
[25] Li L B, Sun Y F. Manual of Physical Properties of Metal Materials [M]. Beijing: Mechanical Industry Press, 2011: 102
[25] (李立碑, 孙玉福. 金属材料物理性能手册 [M]. 北京: 机械工业出版社, 2011: 102)
[26] Ke C. Dictionary of Functional Metals [M]. Beijing: Metallurgical Industry Press, 1999: 68
[26] (柯 成. 金属功能材料词典 [M]. 北京: 冶金工业出版社, 1999: 68)
[27] Li X S, Cai A H, Zeng J J. Effect of Fe on the microstructure and the thermal storage performances of high-silicon aluminum alloy [J]. Adv. Mater. Res., 2014, 915-916: 775
[28] Wang Z P, Tian H Q, Wang K Z, et al. Preparation and study on the matrix of aluminum potassium sulfate eutectic phase change heat storage materials [J]. J. Synth. Cryst, 2013, 42: 491
[28] (王智平, 田禾青, 王克振等. 钾明矾基低共熔相变储热材料的制备与研究 [J]. 人工晶体学报, 2013, 42: 491)
[29] Zhang G C, Li J Q, Ma B Q, et al. Oxidation resistance and plating encapsulation of Cu-based alloys as phase change materials for high-temperature heat storage [J]. Key Eng. Mater., 537: 292
[30] Wang H, Li Y D, Luo X M, et al. Development and research progress of high thermal conductivity aluminum alloys [J]. Foundry, 2019, 68: 1104
[30] (王 慧, 李元东, 罗晓梅等. 高导热铝合金的开发与研究进展 [J]. 铸造, 2019, 68: 1104)
[31] Chen W M, Bai X M. Temperature and composition dependent thermal conductivity model for U-Zr alloys [J]. J. Nucl. Mater., 2018, 507: 360
[32] Zhang R Y. Phase Change Materials and Phase Change Energy Storage Technology [M]. Beijing: Science Press, 2009: 11
[32] (张仁元. 相变材料与相变储能技术 [M]. 北京: 科学出版社, 2009: 11)
[33] Zhang Y P, Su Y H, Ge X S. Prediction of the melting temperature and the fusion heat of (quasi-) eutectic PCM [J]. J. China Univ. Sci. Technol., 1995, (4): 474
[33] (张寅平, 苏跃红, 葛新石. (准)共晶系相变材料融点及融解热的理论预测 [J]. 中国科学技术大学学报, 1995, (4): 474)
[1] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[4] 张志东. 铁磁性三维Ising模型精确解及时间的自发产生[J]. 金属学报, 2023, 59(4): 489-501.
[5] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[6] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[7] 张利民, 李宁, 朱龙飞, 殷鹏飞, 王建元, 吴宏景. 交流电脉冲对过共晶Al-Si合金中初生Si相偏析的作用机制[J]. 金属学报, 2023, 59(12): 1624-1632.
[8] 张丽丽, 吉宗威, 赵九洲, 何杰, 江鸿翔. 亚共晶Al-Si合金中微量元素La变质共晶Si的关键影响因素[J]. 金属学报, 2023, 59(11): 1541-1546.
[9] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[10] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[11] 冯迪, 朱田, 臧千昊, 李胤樹, 范曦, 张豪. 喷射成形过共晶AlSiCuMg合金的固溶行为[J]. 金属学报, 2022, 58(9): 1129-1140.
[12] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[13] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[14] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[15] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.