|
|
Er和Si对铝基储热合金导热系数及相变潜热的影响 |
朱伟强1, 俞牧知1, 唐旭1, 陈孝阳1, 许征兵1,2( ), 曾建民1,2 |
1 广西大学广西有色金属及特色材料加工重点实验室 南宁 530004 2 广西大学广西生态型铝产业协同创新中心 南宁 530004 |
|
Effect of Er and Si on Thermal Conductivity and Latent Heat of Phase Transformation of Aluminum-Based Alloy |
ZHU Weiqiang1, YU Muzhi1, TANG Xu1, CHEN Xiaoyang1, XU Zhengbing1,2( ), ZENG Jianmin1,2 |
1 Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, Guangxi University, Nanning 530004, China 2 Center of Ecological Collaborative Innovation for Aluminum Industry in Guangxi, Guangxi University, Nanning 530004, China |
引用本文:
朱伟强, 俞牧知, 唐旭, 陈孝阳, 许征兵, 曾建民. Er和Si对铝基储热合金导热系数及相变潜热的影响[J]. 金属学报, 2020, 56(11): 1485-1494.
Weiqiang ZHU,
Muzhi YU,
Xu TANG,
Xiaoyang CHEN,
Zhengbing XU,
Jianmin ZENG.
Effect of Er and Si on Thermal Conductivity and Latent Heat of Phase Transformation of Aluminum-Based Alloy[J]. Acta Metall Sin, 2020, 56(11): 1485-1494.
[1] |
Hua J S, Jiao Y, Wang J H. Study on properties of Al-Si/Al2O3 composite phase change material for thermal energy storage [J]. Hot Work. Technol., 2012, 41(8): 72
|
[1] |
(华建社, 焦 勇, 王建宏. Al-Si/Al2O3高温复合相变蓄热材料的研究 [J]. 热加工工艺, 2012, 41(8): 72)
|
[2] |
Lu Z Q, Zhu H W, Han X L, et al. Integrated modelling and algorithm of material delivery and line-side storage for aircraft moving assembly lines [J]. Int. J. Prod. Res., 2019, 57: 5842
|
[3] |
Flury S, Dulla F A, Peutzfeldt A. Repair bond strength of resin composite to restorative materials after short- and long-term storage [J]. Dent. Mater., 2019, 35: 1205
|
[4] |
Liu L F, Chen J Y, Qu Y, et al. Preparation and thermal properties of low melting point alloy/expanded graphite composite phase change materials used in solar water storage system [J]. Sol. Energy Mater. Sol. Cells, 2019, 201: 110112
|
[5] |
Perraudin D Y S, Binder S R, Rezaei E, et al. Phase change material systems for high temperature heat storage [J]. Chimia (Aarau), 2015, 69: 780
|
[6] |
Zhou J, Li H X, Yu Y F, et al. Research on aluminum component change and phase transformation of TiAl-based alloy in electron beam selective melting process under multiple scan [J]. Intermetallics, 2019, 113: 106575
|
[7] |
Zhang G C, Xu Z, Chen Y F, et al. Progress in metal-based phase change materials for thermal energy storage applications [J]. Energy Storage Sci. Technol., 2012, 1: 74
|
[7] |
(张国才, 徐 哲, 陈运法等. 金属基相变材料的研究进展及应用 [J]. 储能科学与技术, 2012, 1: 74)
|
[8] |
Zhang H L, Fang X D, Zhao Y J. Progress in phase change materials and technologies [J]. Mater. Rev., 2014, 28(13): 26
|
[8] |
(张贺磊, 方贤德, 赵颖杰. 相变储热材料及技术的研究进展 [J]. 材料导报, 2014, 28(13): 26)
|
[9] |
Toyoda N K, Watanabe K J, Watanabe M, et al. Studies on a heat storage container with phase change material [J]. Trans. Jpn Soc. Refrig. Air Cond. Eng., 2012, 1: 13
|
[10] |
Chen G S, Wang B Q, Zhang R Y, et al. Research of thermal storage characteristics of Al-Si alloy as PCM [J]. Mater. Res. Appl., 2010, 4: 255
|
[10] |
(陈观生, 王波群, 张仁元等. 金属相变储热材料铝硅合金储热特性研究 [J]. 材料研究与应用, 2010, 4: 255)
|
[11] |
Sheng N, Zhu C Y, Saito G, et al. Development of a microencapsulated Al-Si phase change material with high-temperature thermal stability and durability over 3000 cycles [J]. J. Mater. Chem., 2018, 6: 18143
|
[12] |
Zhang H T, Wang D T, Qin K, et al. Effect of compound modification and cooling rate on microstructure and mechanical properties of Al-25%Si alloy [J]. Mater. Sci. Forum, 2017, 877: 27
|
[13] |
Li Q L, Xia T D, Lan Y F, et al. Effect of rare earth cerium addition on the microstructure and tensile properties of hypereutectic Al-20%Si alloy [J]. J. Alloys Compd., 2013, 562: 25
|
[14] |
Zhu S, Qiu L, Wang X M, et al. Effects of Er addition on Microstructure and mechanical properties of Al-12Si alloy [J]. Hot Work. Technol., 2018, 47(18): 78
|
[14] |
(朱 胜, 邱 六, 王晓明等. Er添加对Al-12Si铝硅合金组织和力学性能的影响 [J]. 热加工工艺, 2018, 47(18): 78)
|
[15] |
Wang L P, Cao G J, Zhang J J, et al. Effect of combined RE-Ba-Sb addition on microstructure and mechanical properties of 4004 aluminum alloy [J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 2236
|
[16] |
Li X Y, Lu Y L, Wang J, et al. Effect of rare earth erbium on microstructure and mechanical properties of A356 aluminum alloy [J]. J. Mater. Eng., 2018, 46(1): 67
|
[16] |
(李晓燕, 卢雅琳, 王 健等. 稀土Er对A356铝合金微观组织和力学性能的影响[J]. 材料工程, 2018, 46(1): 67)
|
[17] |
Fan Y G, Zhang X H, Tang H Q, et al. Influence of RE on mechanical properties of optimized Al-Si casting alloy [J]. Hot Work. Technol., 2012, 41(5): 49
|
[17] |
(范应光, 张修海, 汤宏群等. RE对改良铸造铝硅合金力学性能的影响 [J]. 热加工工艺, 2012, 41(5): 49)
|
[18] |
Cheng X M, He G, Wu X W. Application and research progress of aluminum-based thermal storage materials in solar thermal power [J]. Mater. Rev., 2010, 24(17): 139
|
[18] |
(程晓敏, 何 高, 吴兴文. 铝基合金储热材料在太阳能热发电中的应用及研究进展 [J]. 材料导报, 2010, 24(17): 139)
|
[19] |
Inoue A, Bizen Y, Kimura H M, et al. Compositional range, thermal stability, hardness and electrical resistivity of amorphous alloys in Al-Si (or Ge)-transition metal systems [J]. J. Mater. Sci., 1998, 23: 3640
|
[20] |
Hu G X, Cai X. Fundamentals of Materials Science [M]. Shanghai: Shanghai Jiaotong University Press, 2000: 232
|
[20] |
(胡赓祥, 蔡 珣. 材料科学基础 [M]. 上海: 上海交通大学出版社, 2000: 232)
|
[21] |
Raghavan V. Al-Er-Si (aluminum-erbium-silicon) [J]. J. Phase Equilib., 2010, 31: 44
|
[22] |
Chen X Z, Sieve B, Henning R, et al. Ln2Al3Si2 (Ln= Ho, Er, Tm): New silicides from molten aluminum—Determination of the Al/Si distribution with neutron crystallography and metamagnetic transitions [J]. Angew. Chem., 1999, 38: 693
|
[23] |
Deng C Z, Liu Z Y, Zhou J, et al. Study on thermal stability of 2524 aluminum alloy [J]. Trans. Mater. Heat Treat., 2009, 30(5): 87
|
[24] |
Guo C Q. The method of reckoning up titanium alloy density form its element contents [J]. J. Mater. Eng., 1993, (6): 10
|
[24] |
(郭超祺. 钛合金元素密度法推导计算合金材料密度的研究 [J]. 材料工程, 1993, (6): 10)
|
[25] |
Li L B, Sun Y F. Manual of Physical Properties of Metal Materials [M]. Beijing: Mechanical Industry Press, 2011: 102
|
[25] |
(李立碑, 孙玉福. 金属材料物理性能手册 [M]. 北京: 机械工业出版社, 2011: 102)
|
[26] |
Ke C. Dictionary of Functional Metals [M]. Beijing: Metallurgical Industry Press, 1999: 68
|
[26] |
(柯 成. 金属功能材料词典 [M]. 北京: 冶金工业出版社, 1999: 68)
|
[27] |
Li X S, Cai A H, Zeng J J. Effect of Fe on the microstructure and the thermal storage performances of high-silicon aluminum alloy [J]. Adv. Mater. Res., 2014, 915-916: 775
|
[28] |
Wang Z P, Tian H Q, Wang K Z, et al. Preparation and study on the matrix of aluminum potassium sulfate eutectic phase change heat storage materials [J]. J. Synth. Cryst, 2013, 42: 491
|
[28] |
(王智平, 田禾青, 王克振等. 钾明矾基低共熔相变储热材料的制备与研究 [J]. 人工晶体学报, 2013, 42: 491)
|
[29] |
Zhang G C, Li J Q, Ma B Q, et al. Oxidation resistance and plating encapsulation of Cu-based alloys as phase change materials for high-temperature heat storage [J]. Key Eng. Mater., 537: 292
|
[30] |
Wang H, Li Y D, Luo X M, et al. Development and research progress of high thermal conductivity aluminum alloys [J]. Foundry, 2019, 68: 1104
|
[30] |
(王 慧, 李元东, 罗晓梅等. 高导热铝合金的开发与研究进展 [J]. 铸造, 2019, 68: 1104)
|
[31] |
Chen W M, Bai X M. Temperature and composition dependent thermal conductivity model for U-Zr alloys [J]. J. Nucl. Mater., 2018, 507: 360
|
[32] |
Zhang R Y. Phase Change Materials and Phase Change Energy Storage Technology [M]. Beijing: Science Press, 2009: 11
|
[32] |
(张仁元. 相变材料与相变储能技术 [M]. 北京: 科学出版社, 2009: 11)
|
[33] |
Zhang Y P, Su Y H, Ge X S. Prediction of the melting temperature and the fusion heat of (quasi-) eutectic PCM [J]. J. China Univ. Sci. Technol., 1995, (4): 474
|
[33] |
(张寅平, 苏跃红, 葛新石. (准)共晶系相变材料融点及融解热的理论预测 [J]. 中国科学技术大学学报, 1995, (4): 474)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|