Please wait a minute...
金属学报  2020, Vol. 56 Issue (8): 1123-1132    DOI: 10.11900/0412.1961.2020.00101
  本期目录 | 过刊浏览 |
三联熔炼GH4169合金大规格铸锭与棒材元素偏析行为
张勇1, 李鑫旭1, 韦康1, 韦建环1, 王涛1, 贾崇林1, 李钊1, 马宗青2()
1 中国航发北京航空材料研究院先进高温结构材料重点实验室 北京 100095
2 天津大学材料科学与工程学院 天津 300354
Element Segregation in GH4169 Superalloy Large-Scale Ingot and Billet Manufactured by Triple-Melting
ZHANG Yong1, LI Xinxu1, WEI Kang1, WEI Jianhuan1, WANG Tao1, JIA Chonglin1, LI Zhao1, MA Zongqing2()
1 Key Laboratory of Science and Technology on Advanced High Temperature Structural Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
引用本文:

张勇, 李鑫旭, 韦康, 韦建环, 王涛, 贾崇林, 李钊, 马宗青. 三联熔炼GH4169合金大规格铸锭与棒材元素偏析行为[J]. 金属学报, 2020, 56(8): 1123-1132.
Yong ZHANG, Xinxu LI, Kang WEI, Jianhuan WEI, Tao WANG, Chonglin JIA, Zhao LI, Zongqing MA. Element Segregation in GH4169 Superalloy Large-Scale Ingot and Billet Manufactured by Triple-Melting[J]. Acta Metall Sin, 2020, 56(8): 1123-1132.

全文: PDF(2848 KB)   HTML
摘要: 

采用真空感应熔炼+保护气氛电渣重熔+真空自耗重熔三联熔炼方法制备大规格GH4169合金铸锭,利用SEM、TEM、EPMA和EDS分析了大规格GH4169高温合金自耗锭(直径508 mm)与棒材(直径240 mm)不同部位的典型元素含量和析出相特征。结果表明:大规格铸锭中Al元素偏析程度较轻,而Nb、Ti和Mo元素偏析较重,枝晶间凝固时析出较多的MC相、Laves相和δ相等。经过两阶段高温均匀化处理和开坯锻造后,GH4169棒材内无“黑斑”、“白斑”等宏观偏析,元素微观偏析也被基本消除。结合计算仿真,进一步对比分析了三联熔炼GH4169与Inconel 718合金棒材的化学成分均匀性,发现国产GH4169存在元素的区域偏析,其棒材的典型元素样本方差值(能够体现区域元素偏析程度)与Inconel 718棒材相比存在差距。这种区域元素偏析对国产三联熔炼GH4169棒材的力学性能(如硬度等)波动性造成一定程度的影响。通过精细控制熔炼过程参数,优化均匀化热处理和锻造工艺,有助于进一步降低GH4169合金大规格棒材的区域元素偏析。

关键词 GH4169三联熔炼变形高温合金元素偏析    
Abstract

GH4169 has the advantage of excellent comprehensive mechanical properties, good oxidation and corrosion resistance, etc., which have been widely used in aero engine with the largest consumption. The GH4169 parts include high pressure compressor disk, turbine disk, shaft, gearbox and forged blade, et al. With the development of technology and the requirement of cost reducing, the size of GH4169 ingot and billet increases gradually at home and abroad. However, element segregation becomes more and more severe as the size of GH4169 ingot and billet increases, which will significantly degrade their mechanical properties. In this work, the large-scale GH4169 superalloy ingot (diameter 508 mm) was prepared by triple smelting, vacuum induction melting (VIM)+electro sag remelting (ESR)+vacuum arc remelting (VAR). Then, large-scale GH4169 billet (diameter 240 mm) was obtained from this prepared ingot via two-step high temperature homogenization heat treatment and cogging-forging. The element composition and microstructure at different positions of these large-scale ingot and billet were analyzed by SEM, TEM, EPMA and EDS. The results show that the segregation degree of element Al in GH4169 ingot is small, while those of elements Nb, Ti and Mo are large. Moreover, a lot of secondary phases were precipitated at the interdendritic regions of GH4169 ingot, including MC, Laves and δ phase. In the GH4169 billet prepared in our work, no "freckle" or "white spot" macro segregation was recognized, and the micro-element segregation was eliminated. Furthermore, combined with computational simulation, the chemical composition uniformity and main mechanical properties of GH4169 and Inconel 718 billets were compared. The statistical analysis using sample variance of macro chemical composition shows that the uniformity of chemical composition in GH4169 billet produced by different manufactures is different. The regional element segregation results in some vacillation on the mechanical properties of GH4169 billet. It is proposed that this regional element segregation can be further depressed by elaborately controlling the triple melting process and optimizing the homogenization heat treatment and forging process.

Key wordsGH4169    triple smelting    wrought superalloy    element segregation
收稿日期: 2020-03-28     
ZTFLH:  TG113.12  
基金资助:国家自然科学基金项目(51822404);科工局GH4169合金319专项(XXZX-16-00X);天津市重点研发计划科技支撑重点项目(18YFZCGX00070)
作者简介: 张 勇,男,1976年生,高级工程师
AlloyCMoCrNbAlTiCoNiPSiSFe
GH41690.0272.9617.845.380.541.01<0.153.60.00990.0630.0004Bal.
Inconel 7180.0272.9818.045.400.541.020.3753.50.00790.0610.0003Bal.
表1  三联熔炼GH4169和Inconel 718合金棒材主要化学成分 (mass fraction / %)
图1  GH4169合金自耗锭不同部位枝晶组织的SEM像
Position of ingotRegionAlTiNbMo
Edge

Interdendritic region

Dendritic arm

0.457

0.491

1.249

0.910

6.082

3.376

3.160

2.768

R/2

Interdendritic region

Dendritic arm

0.477

0.513

1.256

0.846

6.442

2.870

2.964

2.545

Center

Interdendritic region

Dendritic arm

0.452

0.526

1.329

0.752

6.639

2.494

3.110

2.501

表2  GH4169合金自耗锭不同部位元素分布 (mass fraction / %)
Position of ingotAlTiNbMo
Edge1.0740.7290.5550.876
R/21.0750.6740.4460.857
Center1.1640.5660.3760.804
表3  GH4169合金自耗锭不同部位元素偏析系数(k)
图2  GH4169合金自耗锭中心部位析出相的EPMA像和SEM像
Phase typeAlTiCrNbNiMoFeC
Carbide-4.9941.04387.6172.5271.5790.5239.730
Laves phase0.1400.81214.90630.15134.10712.63014.0650.247
δ phase0.2721.90511.65115.97258.5702.34411.214-
表4  GH4169合金自耗锭析出相化学成分 (mass fraction / %)
图3  GH4169合金自耗锭中心部位SEM像和元素分布
图4  GH4169合金自耗锭中典型元素Nb、Mo、Al、Ti分布的计算结果
图5  GH4169合金自耗锭高温均匀化后成分分布计算结果
图6  GH4169棒材TEM分析
图7  GH4169棒材典型合金元素分布
图8  GH4169棒材不同位置微观组织的SEM像
Position of billetAlTiMoNbNiCrFe
Edge0.4531.0892.7584.87554.39318.79819.266
0.4271.0442.8014.77854.65818.79619.508
0.4111.0512.8034.77154.32518.79619.421
Average value0.4301.0612.7874.80854.45918.79719.398
R/20.4401.0942.7404.97553.96219.17219.298
0.5021.1222.7424.83553.87719.22519.312
0.4881.1092.7164.87054.17819.09819.268
Average value0.4771.1082.7334.89354.00619.16519.293
Center0.4821.1653.0085.02954.51518.81819.203
0.4441.1473.0245.19154.48318.78118.964
0.4521.1492.9415.13354.44218.95719.115
Average value0.4591.1542.9915.11854.48018.85219.094
表5  利用EPMA测定的GH4169棒材不同部位的元素分布 (mass fraction / %)
图9  棒材横截面不同部位元素测定方法及GH4169棒材与Inconel 718棒材典型元素标准偏差计算结果
图10  GH4169和Inconel 718棒材不同部位硬度
[1] Chen Y, Guo Y B, Xu M J, et al. Study on the element segregation and Laves phase formation in the laser metal deposited IN718 superalloy by flat top laser and gaussian distribution laser [J]. Mater. Sci. Eng., 2019, A754: 339
[2] Farber B, Small K A, Allen C, et al. Correlation of mechanical properties to microstructure in Inconel 718 fabricated by direct metal laser sintering [J]. Mater. Sci. Eng., 2018, A712: 539
[3] Wu J, Li C, Liu Y C, et al. Effect of annealing treatment on microstructure evolution and creep behavior of a multiphase Ni3Al-based superalloy [J]. Mater. Sci. Eng., 2019, A743: 623
[4] Zhang H J, Li C, Guo Q Y, et al. Improving creep resistance of nickel-based superalloy Inconel 718 by tailoring gamma double prime variants [J]. Scr. Mater., 2019, 164: 66
doi: 10.1016/j.scriptamat.2019.01.041
[5] Hosseini E, Popovich V A. A review of mechanical properties of additively manufactured Inconel 718 [J]. Addit. Manuf., 2019, 30: 100877
[6] Zhang X, Li H W, Zhan M, et al. Electron force-induced dislocations annihilation and regeneration of a superalloy through electrical in-situ transmission electron microscopy observations [J]. J. Mater. Sci. Technol., 2020, 36: 79
doi: 10.1016/j.jmst.2019.08.008
[7] Luo J T, Yu W L, Xi C Y, et al. Preparation of ultrafine-grained GH4169 superalloy by high-pressure torsion and analysis of grain refinement mechanism [J]. J. Alloys Compd., 2019, 777: 157
doi: 10.1016/j.jallcom.2018.10.385
[8] Liu Y C, Guo Q Y, Li C, et al. Recent progress on evolution of precipitates in Inconel 718 superalloy [J]. Acta Metall. Sin., 2016, 52: 1259
doi: 10.11900/0412.1961.2016.00290
[8] (刘永长, 郭倩颖, 李 冲等. Inconel 718高温合金中析出相演变研究进展 [J]. 金属学报, 2016, 52: 1259)
doi: 10.11900/0412.1961.2016.00290
[9] Bi Z N, Qin H L, Dong Z G, et al. Residual stress evolution and its mechanism during the manufacture of superalloy disk forgings [J]. Acta Metall. Sin., 2019, 55: 1160
doi: 10.11900/0412.1961.2019.00089
[9] (毕中南, 秦海龙, 董志国等. 高温合金盘锻件制备过程残余应力的演化规律及机制 [J]. 金属学报, 2019, 55: 1160)
doi: 10.11900/0412.1961.2019.00089
[10] Liu Y C, Zhang H J, Guo Q Y, et al. Microstructure evolution of Inconel 718 superalloy during hot working and its recent development tendency [J]. Acta Metall. Sin., 2018, 54: 1653
doi: 10.11900/0412.1961.2018.00340
[10] (刘永长, 张宏军, 郭倩颖等. Inconel 718变形高温合金热加工组织演变与发展趋势 [J]. 金属学报, 2018, 54: 1653)
doi: 10.11900/0412.1961.2018.00340
[11] Yu K O, Domingue J A, Maurer G E, et al. Macrosegregation in ESR and VAR processes [J]. JOM, 1986, 38(1): 46
[12] Gribbin S, Ghorbanpour S, Ferreri N C, et al. Role of grain structure, grain boundaries, crystallographic texture, precipitates, and porosity on fatigue behavior of Inconel 718 at room and elevated temperatures [J]. Mater. Charact., 2019, 149: 184
doi: 10.1016/j.matchar.2019.01.028
[13] Holland S, Wang X Q, Chen J, et al. Multiscale characterization of microstructures and mechanical properties of Inconel 718 fabricated by selective laser melting [J]. J. Alloys Compd., 2019, 784: 182
doi: 10.1016/j.jallcom.2018.12.380
[14] Wang Z X, Huang S, Zhang B J, et al. Study on freckle of a high-alloyed GH4065 nickel base wrought superalloy [J]. Acta Metall. Sin., 2019, 55: 417
doi: 10.11900/0412.1961.2018.00218
[14] (王资兴, 黄 烁, 张北江等. 高合金化GH4065镍基变形高温合金点状偏析研究 [J]. 金属学报, 2019, 55: 417)
doi: 10.11900/0412.1961.2018.00218
[15] Rist M A, James J A, Tin S, et al. Residual stresses in a quenched superalloy turbine disc: Measurements and modeling [J]. Metall. Mater. Trans., 2006, 37A: 459
[16] Sidorov V V, Min P G. Refining a complex nickel alloy to remove a sulfur impurity during vacuum induction melting: Part I [J]. Russ. Metall., 2014, (12): 982
[17] Wen D X, Lin Y C, Li X H, et al. Hot deformation characteristics and dislocation substructure evolution of a nickel-base alloy considering effects of δ phase [J]. J. Alloys Compd., 2018, 764: 1008
doi: 10.1016/j.jallcom.2018.06.146
[18] Zhang H J, Li C, Liu Y C, et al. Precipitation behavior during high-temperature isothermal compressive deformation of Inconel 718 alloy [J]. Mater. Sci. Eng., 2016, A677: 515
[19] Mei Y P, Liu Y C, Liu C X, et al. Effect of base metal and welding speed on fusion zone microstructure and HAZ hot-cracking of electron-beam welded Inconel 718 [J]. Mater. Des., 2016, 89: 964
doi: 10.1016/j.matdes.2015.10.082
[20] Zhuang J Y, Du J H, Deng Q, et al. Superalloy GH4169 [M]. Beijing: Metallurgy Industry Press, 2006: 44
[20] (庄锦云, 杜金辉, 邓 群等. 变形高温合金GH4169 [M]. 北京: 冶金工业出版社, 2006: 44)
[21] Wang H P, Lü P, Cai X, et al. Rapid solidification kinetics and mechanical property characteristics of Ni-Zr eutectic alloys processed under electromagnetic levitation state [J]. Mater. Sci. Eng., 2020, A772: 138660
[22] Drexler A, Oberwinkler B, Primig S, et al. Experimental and numerical investigations of the γ'' and γ' precipitation kinetics in Alloy 718 [J]. Mater. Sci. Eng., 2018, A723: 314
[23] Geddes B, Leno H, Huang X. Superalloys: Alloying and Performance [M]. Materials Park, Ohio: ASM International, 2010: 9
[24] Wang F, Xu W L, Ma D X, et al. Co-growing mechanism of γ/γ' eutectic on MC-type carbide in Ni-based single crystal superalloys [J]. J. Alloys Compd., 2019, 792: 505
doi: 10.1016/j.jallcom.2019.04.067
[25] Wu J, Liu Y C, Li C, et al. Recent progress of microstructure evolution and performance of multiphase Ni3Al-based intermetallic alloy with high Fe and Cr contents [J]. Acta Metall. Sin., 2020, 56: 21
[25] (吴 静, 刘永长, 李 冲等. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展 [J]. 金属学报, 2020, 56: 21)
[26] Wu Y T, Liu Y C, Li C, et al. Coarsening behavior of γ' precipitates in the γ'+γ area of a Ni3Al-based alloy [J]. J. Alloys Compd., 2019, 771: 526
doi: 10.1016/j.jallcom.2018.08.265
[27] Duan L J, Liu Y C. Relationships between elastic constants and EAM/FS potential functions for cubic crystals [J]. Acta Metall. Sin., 2020, 56: 112
[27] (段灵杰, 刘永长. 立方晶体弹性常数和EAM/FS势函数的关系 [J]. 金属学报, 2020, 56: 112)
[28] Wei K, Li X X, Zhang Y, et al. Analysis on quality of GH4169 alloy billet with large specification at home and abroad [A]. Proceedings of the 14th China Annual Conference on Superalloy [C]. Beijing: Metallurgical Industry Press, 2019: 127
[28] (韦 康, 李鑫旭, 张 勇等. 国内外三联冶炼GH4169合金大规格棒材质量分析 [A]. 第十四届中国高温合金年会论文集 [C]. 北京: 冶金工业出版社, 2019: 127)
[1] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[2] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[3] 张伟东, 崔宇, 刘莉, 王文泉, 刘叡, 李蕊, 王福会. 600℃ NaCl盐雾环境下GH4169合金的腐蚀行为[J]. 金属学报, 2023, 59(11): 1475-1486.
[4] 李彦默, 郭小辉, 陈斌, 李培跃, 郭倩颖, 丁然, 余黎明, 苏宇, 李文亚. GH4169合金与S31042钢线性摩擦焊接头组织及力学性能[J]. 金属学报, 2021, 57(3): 363-374.
[5] 张瑞, 刘鹏, 崔传勇, 曲敬龙, 张北江, 杜金辉, 周亦胄, 孙晓峰. 国内航空发动机涡轮盘用铸锻难变形高温合金热加工研究现状与展望[J]. 金属学报, 2021, 57(10): 1215-1228.
[6] 向雪梅, 江河, 董建新, 姚志浩. 难变形高温合金GH4975的铸态组织及均匀化[J]. 金属学报, 2020, 56(7): 988-996.
[7] 张勇, 李鑫旭, 韦康, 万志鹏, 贾崇林, 王涛, 李钊, 孙宇, 梁红艳. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410.
[8] 谭海兵, 黄烁, 王静, 李姝, 朱昌洪, 钟燕, 钟世林, 何爱杰. 白斑缺陷对GH4586合金组织和力学性能的影响[J]. 金属学报, 2020, 56(10): 1411-1422.
[9] 杜金辉,吕旭东,董建新,孙文儒,毕中南,赵光普,邓群,崔传勇,马惠萍,张北江. 国内变形高温合金研制进展[J]. 金属学报, 2019, 55(9): 1115-1132.
[10] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.
[11] 席明哲,周玮,尚俊英,吕超,吴贞号,高士友. 热处理对连续点式锻压激光快速成形GH4169合金组织与拉伸性能的影响[J]. 金属学报, 2017, 53(2): 239-247.
[12] 王建国,刘东,杨艳慧. GH4169合金非均匀组织在加热过程中的演化机理*[J]. 金属学报, 2016, 52(6): 707-716.
[13] 安金岚,王磊,刘杨,胥国华,赵光普. 长期时效对GH4169合金组织演化及低周疲劳行为的影响*[J]. 金属学报, 2015, 51(7): 835-843.
[14] 王磊,安金岚,刘杨,宋秀,胥国华,赵光普. 静电场处理对GH4169合金中d相析出行为的影响[J]. 金属学报, 2015, 51(10): 1235-1241.
[15] 罗银屏, 周亦胄, 刘金来. Ru和Cr在一种无Re镍基单晶高温合金凝固过程中的作用[J]. 金属学报, 2014, 50(9): 1025-1030.