|
|
Ti-6Al-4V合金β→α相变中晶界α相形成机制的相场模拟 |
孙佳1,2, 李学雄1, 张金虎1, 王刚3, 杨梅4, 王皞1,5, 徐东生1,5( ) |
1 中国科学院金属研究所 沈阳 110016 2 中国科学院大学 北京 100049 3 华南理工大学材料科学与工程学院 广州 510006 4 江苏理工学院材料工程学院 常州 213001 5 中国科学技术大学材料科学与工程学院 沈阳 110016 |
|
Phase Field Modeling of Formation Mechanism of Grain Boundary Allotriomorph in β→α Phase Transformation in Ti-6Al-4V Alloy |
SUN Jia1,2, LI Xuexiong1, ZHANG Jinhu1, WANG Gang3, YANG Mei4, WANG Hao1,5, XU Dongsheng1,5( ) |
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China 4 School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, China 5 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
孙佳, 李学雄, 张金虎, 王刚, 杨梅, 王皞, 徐东生. Ti-6Al-4V合金β→α相变中晶界α相形成机制的相场模拟[J]. 金属学报, 2020, 56(8): 1113-1122.
Jia SUN,
Xuexiong LI,
Jinhu ZHANG,
Gang WANG,
Mei YANG,
Hao WANG,
Dongsheng XU.
Phase Field Modeling of Formation Mechanism of Grain Boundary Allotriomorph in β→α Phase Transformation in Ti-6Al-4V Alloy[J]. Acta Metall Sin, 2020, 56(8): 1113-1122.
[1] |
Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review [J]. Prog. Mater. Sci., 2009, 54: 397
doi: 10.1016/j.pmatsci.2008.06.004
|
[2] |
Shi R, Wang Y. Variant selection during α precipitation in Ti-6Al-4V under the influence of local stress—A simulation study [J]. Acta Mater., 2013, 61: 6006
doi: 10.1016/j.actamat.2013.06.042
|
[3] |
Gornakova A S, Prokofiev S I, Straumal B B, et al. Growth of (αTi) grain-boundary layers in Ti-Co alloys [J]. Russ. J. Non-Ferrous Met., 2016, 57: 703
doi: 10.3103/S1067821216070099
|
[4] |
Egorova Y B, Il'in A A, Kolachev B A, et al. Effect of the structure on the cutability of titanium alloys [J]. Met. Sci. Heat Treat., 2003, 45: 134
doi: 10.1023/A:1024527807272
|
[5] |
Fishgoit A V, Maistrov V M, Il'in A A, et al. Interaction of short cracks with the structure of metals [J]. Sov. Mater. Sci., 1990, 25: 571
doi: 10.1007/BF00727082
|
[6] |
Bobovnikov V N, Luk'yanenko V V, Fishgoit A V. Effect of particles of the insoluble phase Al9FeNi on the kinetics of fatigue crack propagation in alloy Ak4-1 [J]. Met. Sci. Heat Treat., 1982, 24: 191
doi: 10.1007/BF01166851
|
[7] |
Kolachev B A, Lyasotskaya V S. Correlation between diagrams of isothermal and anisothermal transformations and phase composition diagram of hardened titanium alloys [J]. Met. Sci. Heat Treat., 2003, 45: 119
doi: 10.1023/A:1024571622294
|
[8] |
Straumal B B, Baretzky B, Kogtenkova O A, et al. Wetting of grain boundaries in Al by the solid Al3Mg2 phase [J]. J. Mater. Sci., 2010, 45: 2057
doi: 10.1007/s10853-009-4014-6
|
[9] |
Lütjering G, Williams J C. Titanium [M]. Berlin, Heidelberg: Springer-Verlag, 2007: 1
|
[10] |
Beeler J R. Computer experiments on point defect configurations and energies in Ti-M systems [J]. JOM, 1968, 20(1): 383
|
[11] |
Lütjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys [J]. Mater. Sci. Eng., 1998, A243: 32
|
[12] |
Banerjee D, Williams J C. Perspectives on titanium science and technology [J]. Acta Mater., 2013, 61: 844
doi: 10.1016/j.actamat.2012.10.043
|
[13] |
Furuhara T, Aaronson H I. Crystallography and interfacial structure of proeutectoid α grain boundary allotriomorphs in a hypoeutectoid Ti-Cr alloy [J]. Acta Metall. Mater., 1991, 39: 2887
doi: 10.1016/0956-7151(91)90105-A
|
[14] |
Liu C M, Wang H M, Tian X J, et al. Development of a pre-heat treatment for obtaining discontinuous grain boundary α in laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe alloy [J]. Mater. Sci. Eng., 2014, A604: 176
|
[15] |
Gornakova A S, Straumal B B, Nekrasov A N, et al. Grain boundary wetting by a second solid phase in Ti-Fe alloys [J]. J. Mater. Eng. Perform., 2018, 27: 4989
doi: 10.1007/s11665-018-3300-3
|
[16] |
Heo T W, Zhang L, Du Q, et al. Incorporating diffuse-interface nuclei in phase-field simulations [J]. Scr. Mater., 2010, 63: 8
doi: 10.1016/j.scriptamat.2010.02.028
|
[17] |
Karma A, Rappel W J. Phase-field model of dendritic sidebranching with thermal noise [J]. Phys. Rev., 1999, 60E: 3614
|
[18] |
Karma A. Fluctuations in solidification [J]. Phys. Rev., 1993, 48E: 3441
|
[19] |
Hubert J, Cheng M, Emmerich H. Effect of noise-induced nucleation on grain size distribution studied via the phase-field crystal method [J]. J. Phys. Condens. Matter, 2009, 21: 464108
doi: 10.1088/0953-8984/21/46/464108
|
[20] |
Kim S G, Kim W T, Suzuki T. Phase-field model for binary alloys [J]. Phys. Rev., 1999, 60E: 7186
|
[21] |
Kundin J, Pogorelov E, Emmerich H. Phase-field modeling of the microstructure evolution and heterogeneous nucleation in solidifying ternary Al-Cu-Ni alloys [J]. Acta Mater., 2015, 83: 448
doi: 10.1016/j.actamat.2014.09.057
|
[22] |
Ovid'ko I A. Deformation and diffusion modes in nanocrystalline materials [J]. Int. Mater. Rev., 2005, 50: 65
doi: 10.1179/174328005X14294
|
[23] |
Bronchart Q, Le Bouar Y, Finel A. New coarse-grained derivation of a phase field model for precipitation [J]. Phys. Rev. Lett., 2008, 100: 015702
pmid: 18232784
|
[24] |
Gránásy L, Pusztai T, Warren J A. Modelling polycrystalline solidification using phase field theory [J]. J. Phys. Condens. Matter, 2004, 16: R1205
|
[25] |
Wynblatt P, Chatain D. Solid-state wetting transitions at grain boundaries [J]. Mater. Sci. Eng., 2008, A495: 119
|
[26] |
McEldowney D J, Tamirisakandala S, Miracle D B. Heat-treatment effects on the microstructure and tensile properties of powder metallurgy Ti-6Al-4V alloys modified with boron [J]. Metall. Mater. Trans., 2010, 41A: 1003
|
[27] |
Chen Y Y, Du Z X, Xiao S L, et al. Effect of aging heat treatment on microstructure and tensile properties of a new β high strength titanium alloy [J]. J. Alloys Compd., 2014, 586: 588
doi: 10.1016/j.jallcom.2013.10.096
|
[28] |
Nag S, Banerjee R, Stechschulte J, et al. Comparison of microstructural evolution in Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys [J]. J. Mater. Sci. Mater. Med., 2005, 16: 679
pmid: 15965601
|
[29] |
Sun Z C, Li X S, Wu H L, et al. A unified growth model of the secondary grain boundary α phase in TA15 Ti-alloy [J]. J. Alloys Compd., 2016, 689: 693
doi: 10.1016/j.jallcom.2016.08.013
|
[30] |
Guo W, Spatschek R, Steinbach I. An analytical study of the static state of multi-junctions in a multi-phase field model [J]. Physica, 2011, 240D: 382
|
[31] |
Fisher J C. Calculation of diffusion penetration curves for surface and grain boundary diffusion [J]. J. Appl. Phys., 1951, 22: 74
doi: 10.1063/1.1699825
|
[32] |
Liu C M, Lu Y, Tian X J, et al. Influence of continuous grain boundary α on ductility of laser melting deposited titanium alloys [J]. Mater. Sci. Eng., 2016, A661: 145
|
[33] |
Liu C M, Yu L, Zhang A L, et al. Beta heat treatment of laser melting deposited high strength near β titanium alloy [J]. Mater. Sci. Eng., 2016, A673: 185
|
[34] |
Foltz J W, Welk B, Collins P C, et al. Formation of grain boundary α in β Ti alloys: Its role in deformation and fracture behavior of these alloys [J]. Metall. Mater. Trans., 2011, 42A: 645
|
[35] |
Lütjering G, Albrecht J, Sauer C, et al. The influence of soft, precipitate-free zones at grain boundaries in Ti and Al alloys on their fatigue and fracture behavior [J]. Mater. Sci. Eng., 2007, A468-470: 201
|
[36] |
Liu C Y, Gu W Y, Kong D J, et al. The significant effects of the alkali-metal cations on ZSM-5 zeolite synthesis: From mechanism to morphology [J]. Microporous Mesoporous Mater., 2014, 183: 30
doi: 10.1016/j.micromeso.2013.08.037
|
[37] |
Wang Y, Zhang S Q, Tian X J, et al. High-cycle fatigue crack initiation and propagation in laser melting deposited TC18 titanium alloy [J]. Int. J. Miner. Metall. Mater., 2013, 20: 665
doi: 10.1007/s12613-013-0781-9
|
[38] |
Straumal B B, Kogtenkova O A, Murashkin M Y, et al. Grain boundary wetting transition in Al-Mg alloys [J]. Mater. Lett., 2017, 186: 82
doi: 10.1016/j.matlet.2016.09.088
|
[39] |
Protasova S G, Kogtenkova O A, Straumal B B, et al. Inversed solid-phase grain boundary wetting in the Al-Zn system [J]. J. Mater. Sci., 2011, 46: 4349
doi: 10.1007/s10853-011-5322-1
|
[40] |
Zhu C S, Liu B C, Jing T, et al. Dependence of dendritic side-branches on parameters in phase-field simulations [J]. Mater. Trans., 2005, 46: 15
doi: 10.2320/matertrans.46.15
|
[41] |
Elder K R, Katakowski M, Haataja M, et al. Modeling elasticity in crystal growth [J]. Phys. Rev. Lett., 2002, 88: 245701
doi: 10.1103/PhysRevLett.88.245701
pmid: 12059316
|
[42] |
Straumal B B, Gornakova A S, Kogtenkova O A, et al. Continuous and discontinuous grain-boundary wetting in ZnxAl1-x [J]. Phys. Rev., 2008, 78B: 054202
|
[43] |
Kundin J, Chen H L, Siquieri R, et al. Investigation of the heterogeneous nucleation in a peritectic AlNi alloy [J]. Eur. Phys. J. Plus, 2011, 126: 96
doi: 10.1140/epjp/i2011-11096-6
|
[44] |
Kundin J, Wang P, Emmerich H, et al. Investigation of Al-Cu-Ni alloy solidification: Thermodynamics, experiments and phase-field modeling [J]. Eur. Phys. J. Spec. Top., 2014, 223: 567
doi: 10.1140/epjst/e2014-02110-6
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|