Please wait a minute...
金属学报  2015, Vol. 51 Issue (10): 1235-1241    DOI: 10.11900/0412.1961.2015.00375
  本期目录 | 过刊浏览 |
静电场处理对GH4169合金中d相析出行为的影响
王磊1(),安金岚1,刘杨1,宋秀1,胥国华2,赵光普2
2 钢铁研究总院高温材料研究所, 北京 100081
INFLUENCE OF ELECTRIC FIELD TREATMENT ON PRECIPITATION BEHAVIOR OF d PHASE IN GH4169 SUPERALLOY
Lei WANG1(),Jinlan AN1,Yang LIU1,Xiu SONG1,Guohua XU2,Guangpu ZHAO2
1 Key Lab for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University,
Shenyang 110819
2 High Temperature Material Research Institute, Central Iron and Steel Research Institute, Beijing 100081
全文: PDF(6071 KB)   HTML
摘要: 

将静电场应用于GH4169合金的时效过程, 研究了静电场对合金d相沉淀析出行为的影响规律, 并探讨了其机理. 结果表明, 合金在850 ℃以8 kV/cm静电场强度进行15 min时效, d相开始在晶界析出; 时效1 h晶内分布大量γ’’相. 随时效时间延长, d相尺寸增大、体积分数增加, γ’’相尺寸亦增大. 与未加静电场时效处理相比, 静电场时效处理后合金中d相体积分数降低、尺寸减小, γ"相体积分数升高; 晶界d相中Nb原子分数降低、Fe和Cr原子分数升高, 晶界d相点阵常数c减小、a和b增大. 由于静电场时效处理后合金中平均空位浓度升高, 促进了Fe和Cr原子扩散, 同时Fe和Cr原子置换晶界d相中Nb原子, Nb原子固溶入晶内. 另一方面, 空位浓度的升高增加了γ’’相非匀质形核几率, 促进γ’’相析出. 同时, 空位亦可松弛基体γ相与γ’’相的共格畸变, 有效抑制了γ’’相向d相转变, 增加了强化相γ’’相的稳定性.

关键词 GH4169合金电场处理dγ’’相    
Abstract

GH4169 alloy is widely used to make aero engine, gas turbine as it is one of the most important superalloy. γ’' phase is the main strengthen phase, however, the metastable γ’' phase will transform to stable d phase during aging or servicing for certain time. d phase is significance in the alloy, its precipitating and distributing behavior have an effect on the properties of the alloy. In recent year, researchers pay more attention on electric field treatment (EFT), this is because of high energy density, accurate controlling, clean and safety. EFT is one of the most important energy field except temperature field and stress field. In this work, EFT was performed on GH4169 superalloy to investigate the influence of EFT on precipitation behavior of d phase in the alloy, and the mechanism of the effect of EFT on the phase transformation was also discussed. The results show that d phases precipitate on the grain boundaries after EFT with 8 kV/cm at 850 ℃ for 15 min, and large amounts of γ’' phases precipitate inside the grains. With the increasing of EFT time, both the volume fraction and the size of d phase increase, at the same time the size of γ’' phase increases. The volume fraction of d phase is less and the size of d phase is smaller, and the volume fraction of γ’' phase is higher by EFT, compared with that by aging treatment (AT) for the same time. In addition, the Nb content on the grain boundary decreases and both Fe and Cr content increase, meanwhile the lattice parameters of c decreases and a, b increase. The vacancy concentrations can be accelerated by EFT, so that the diffusion of Fe and Cr atoms can be promoted. Meanwhile, the Nb atoms in d phases on the grain boundaries can be displaced by Fe atoms and Cr atoms, therefore the Nb atoms are dissolved into the grain. The nucleation rate of γ’' phases increases with the increasing of vacancy concentrations. The vacancies relax coherent distortion between γ phases and γ’' phases, and suppress γ’' phases to transform to d phases. Thus the stabilization of γ’' phases is enhanced.

Key wordsGH4169 alloy    electric field treatment    d phase    γ’' phase
    
基金资助:*国家高技术研究发展计划项目2012AA03A513以及国家自然科学基金项目51171039和51371044资助

引用本文:

王磊,安金岚,刘杨,宋秀,胥国华,赵光普. 静电场处理对GH4169合金中d相析出行为的影响[J]. 金属学报, 2015, 51(10): 1235-1241.
Lei WANG, Jinlan AN, Yang LIU, Xiu SONG, Guohua XU, Guangpu ZHAO. INFLUENCE OF ELECTRIC FIELD TREATMENT ON PRECIPITATION BEHAVIOR OF d PHASE IN GH4169 SUPERALLOY. Acta Metall Sin, 2015, 51(10): 1235-1241.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00375      或      https://www.ams.org.cn/CN/Y2015/V51/I10/1235

图1  GH4169合金静电场时效处理装置示意图
图2  GH4169合金在850 ℃经常规时效和静电场时效处理后d相的形貌
图3  GH4169合金在850 ℃静电场时效20 h后d相的形貌
图4  GH4169合金在850 ℃时效处理d相体积分数随时效时间的变化
图5  GH4169合金在850 ℃经静电场时效处理后晶内γ’’相的形貌
图6  GH4169合金在850 ℃时效处理后γ″相的形貌
Treatment Al Ti Cr Fe Nb Ni Mo
EFT 0.65 1.57 17.87 15.37 6.38 57.10 1.06
AT 0.16 2.36 15.90 14.52 11.74 54.32 1.00
表1  GH4169合金在850 ℃经静电场及常规时效处理20 h后晶界d相的成分
图7  GH4169合金在850 ℃经静电场时效处理20 h后γ’’相TEM像及选区的HRTEM像
Treatment Time Lattice constant / nm
h a b c
AT 10 5.11 4.36 4.58
20 5.11 4.39 4.63
EFT 10 5.29 4.36 4.51
20 5.23 4.42 4.52
表2  GH4169合金在850 ℃经静电场时效及常规时效处理后晶界d相的晶格常数
[1] Guo J T. Materials Science and Engineering for Superalloys. Vol.3, Beijing: Science Press, 2010: IX (郭建亭. 高温合金材料学(下册). 北京: 科学出版社, 2010: IX)
[2] Deng G J, Tu S T, Zhang X C, Wang Q Q, Qin C H. Eng Fract Mech, 2015; 134: 433
[3] Wang Y, Lin L, Shao W Z. Trans Mater Heat Treatment, 2007; 28(suppl): 176
[4] Medeiros S C, Prasad Y V R K, Frazier W G, Srinivasan R. Mater Sci Eng, 2000; A293: 198
[5] Tian S G, Wang X, Xie J, Liu C, Guo Z G, Liu J, Sun W R. Acta Metall Sin, 2013; 49: 845 (田素贵, 王 欣, 谢 君, 刘 臣, 郭忠革, 刘 姣, 孙文儒. 金属学报, 2013; 49: 845)
[6] Cai D Y, Zhang W H, Liu W C, Xiao F R, Yao M, Sun G D, Chen Z L, Wang S G. Nonferrous Met, 2003; 55(1): 4 (蔡大勇, 张伟红, 刘文昌, 肖福仁, 姚 枚, 孙贵东, 陈宗霖, 王少刚. 有色金属, 2003; 55(1): 4)
[7] Srinivasan D. Mater Sci Eng, 2004; A364: 27
[8] Azadian S, Wei L Y, Warren R. Mater Charact, 2004; 53(1): 7
[9] Yuan H, Liu W C. Mater Sci Eng, 2005; A408: 281
[10] Wang Y, Zhen L, Shao W Z, Yang L, Zhang M. J Alloys Compd, 2009; 44: 341
[11] Wang Y, Shao W Z, Zhen L, Zhang B Y. Mater Sci Eng, 2011; A528: 3218
[12] Zhang H, Ying Z Y, Chang X Z. J Mater Eng, 1992; (S1): 131 (张 华, 应志毅, 常雪智. 材料工程, 1992; (S1): 131)
[13] Tang C, Du J H, Liu J H, Deng Q. J Iron Steel Res, 2013; 25(9): 38 (唐 程, 杜金辉, 刘军和, 邓 群. 钢铁研究学报, 2013; 25(9): 38)
[14] An J L, Wang L, Liu Y, Xu G H, Zhao G P. Acta Metall Sin, 2015; 51: 835 (安金岚, 王 磊, 刘 杨, 胥国华, 赵光普. 金属学报, 2015; 51: 835)
[15] Pouranvari M, Ekrami A, Kokabi A H. Mater Des, 2013; 50: 694
[16] Conrad H, Yang D. Acta Mater, 2002; 50: 2851
[17] Yang D, Conrad H. Intermetallics, 2001; 9: 943
[18] Liu Y, Wang L, Qiao X Y, Wang Y Q. Rare Met Mater Eng, 2008; 37(1): 66 (刘 杨, 王 磊, 乔雪璎, 王延庆. 稀有金属材料与工程, 2008; 37(1): 66)
[19] Liu Y, Wang L, Ding Y, Cui T, Wang Y Q. China J Nonferrous Met, 2006; 16: 1749 (刘 杨, 王 磊, 丁 扬, 崔 彤, 王延庆. 中国有色金属学报, 2006; 16: 1749)
[20] Zhang X Y, Wang L, Wang Y, Liu Y, Lv X D, Chao Y S. J Iron Steel Res, 2011; 23(Suppl 2): 146 (张新宇, 王 磊, 王 尧, 刘 杨, 吕旭东, 晁月盛. 钢铁研究学报, 2011; 23(增刊2): 146)
[21] Wang Y. PhD Dissertation, Northeastern University, Shenyang, 2013 (王 尧. 东北大学博士学位论文, 沈阳, 2013)
[22] Liu W, Liang K M, Zheng Y K. J Mater Sci, 1998; 33: 1043
[23] Li S Q, Zhuang J Y, Yang J Y, Deng Q, Du J H, Xie X S, Li B, Xu Z C, Cao Z, Su Z Q, Jiang C Z. In: Loria E A ed., Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, PA: TMS, 1994: 545
[24] Dong J X, Xie X S, Xu Z C, Zhang S H, Chen M Z, Radavich J F. In: Loria E A ed., Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, PA: TMS, 1994: 649
[25] Dean J A. Lange's Chemistry Handbook Version 15th. New York: McGraw-Hill Professional, 1998: 430
[1] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.
[2] 王建国,刘东,杨艳慧. GH4169合金非均匀组织在加热过程中的演化机理*[J]. 金属学报, 2016, 52(6): 707-716.
[3] 安金岚,王磊,刘杨,胥国华,赵光普. 长期时效对GH4169合金组织演化及低周疲劳行为的影响*[J]. 金属学报, 2015, 51(7): 835-843.
[4] 刘奋成, 林鑫, 余小斌, 黄春平, 黄卫东. 激光立体成形GH4169合金再结晶过程中的界面和晶体取向演化*[J]. 金属学报, 2014, 50(4): 463-470.
[5] 张海燕,张士宏,程明. δ相对GH4169合金高温拉伸变形行为的影响[J]. 金属学报, 2013, 29(4): 483-488.
[6] 张麦仓,曹国鑫,董建新,郑磊,姚志浩. 基于经典动态模型的GH4169合金钢锭中Laves相的回溶规律分析[J]. 金属学报, 2013, 49(3): 372-378.
[7] 刘杨 王磊 何思斯 冯飞 吕旭东 张北江. 长期时效对GH4169合金动态拉伸变形行为的影响[J]. 金属学报, 2012, 48(1): 49-55.