Please wait a minute...
金属学报  2015, Vol. 51 Issue (3): 357-363    DOI: 10.11900/0412.1961.2014.00298
  本期目录 | 过刊浏览 |
耦合孪生的TWIP钢单晶体塑性变形行为模拟研究
孙朝阳(), 郭祥如, 黄杰, 郭宁, 王善伟, 杨竞
北京科技大学机械工程学院, 北京 100083
MODELLING OF PLASTIC DEFORMATION ON COUPLING TWINNING OF SINGLE CRYSTAL TWIP STEEL
SUN Chaoyang(), GUO Xiangru, HUANG Jie, GUO Ning, WANG Shanwei, YANG Jing
School of Mechanical and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

孙朝阳, 郭祥如, 黄杰, 郭宁, 王善伟, 杨竞. 耦合孪生的TWIP钢单晶体塑性变形行为模拟研究[J]. 金属学报, 2015, 51(3): 357-363.
Chaoyang SUN, Xiangru GUO, Jie HUANG, Ning GUO, Shanwei WANG, Jing YANG. MODELLING OF PLASTIC DEFORMATION ON COUPLING TWINNING OF SINGLE CRYSTAL TWIP STEEL[J]. Acta Metall Sin, 2015, 51(3): 357-363.

全文: PDF(1125 KB)   HTML
摘要: 

基于晶体塑性理论, 建立了滑移和孪生机制耦合的孪生诱导塑性(TWIP)钢单晶晶体塑性本构模型, 通过引入孪晶体积分数及其饱和值, 分别考虑了孪生对硬化及滑移的影响, 对该本构模型进行数值实现. 并通过ABAQUS/UMAT平台上的二次开发, 将其应用于TWIP钢单晶典型取向单向加载条件下的力学行为模拟. 分析了单晶不同取向下塑性变形的微观机理和滑移系、孪生系的启动状态及其对宏观塑性的影响, 尤其是模拟得到黄Cu取向和S取向加载过程的应力突变, 再现了Cu单晶实验中的应力陡降现象. 结果表明, 孪晶体积分数较小时, 对应变硬化影响较小; 随着孪晶体积分数的增加, 对应变硬化的影响逐渐明显; 当孪晶体积达到一定量时, 孪晶体积达到饱和, 孪生增量为0, 晶体滑移转向, 新的滑移系启动, 应力突降.

关键词 TWIP钢晶体塑性滑移孪生本构模型    
Abstract

Twinning induced plasticity (TWIP) steel exhibits high strength and exceptional plasticity due to the formation of extensive twin under mechanical load and its ultimate tensile strength and elongation to failure-ductility-value can be as high as 50000 MPa%. Therefore, the TWIP steel can still maintain high energy absorption performance and impact resistance when its thickness is reducing to the half. The high work hardening plays a dominant role during deformation, resulting in excellent mechanical properties. The deformation mechanisms, responsible for this high work hardening, are related to strain-induced microstructural changes, which are dominated by slip and twinning. Different deformation mechanisms, which can be activated at different stages of deformation, will strongly influence stress-strain response and microstructure evolution. In order to understand the effects of slip and twinning during plastic deformation process, it is important to explore the microstructure evolution of those two deformation mechanisms and their influences on macroscopic deformation during this process. In this work, a crystal plasticity constitutive model of TWIP steel coupling slip and twinning was developed based on the crystal plasticity theory. In this model, the volume fraction of twin and its saturation value were introduced in order to consider the effect of twinning on hardening and slip, respectively. The constitutive model was implemented and programed based on the ABAQUS/UMAT platform. It was applied to simulate the plastic deformation process of single crystal for typical orientation microstructures under simply loading condition. The microscopic mechanism of plastic deformation of single crystals with different orientations was analyzed, and then the influence of slip-twinning system startup states on macroscopic plastic deformation was investigated. The saltation of stress for brass and S orientations was paid attention especially, the stress steep fall for copper single crystal was also reproduced during tensile tests. The results show that when the volume fraction of twin is small, its effect on strain hardening should be ignored; however, its impact becomes gradually obvious with the increase of volume fraction of twin; when the volume fraction of twin reaches saturation value, twinning increment is zero, the slip directions in crystal must change, another slip system will be activated as a result of stress dropping suddenly.

Key wordsTWIP steel    crystal plasticity    slip    twinning    constitutive model
    
ZTFLH:  TG142.1  
基金资助:* 国家自然科学基金委员会-中国工程物理研究院联合基金项目U1330121, 国家自然科学基金项目51105029和北京市自然科学基金项目3112019资助
作者简介: null

孙朝阳, 男, 1976年生, 副教授, 博士

图1  耦合孪生的变形梯度乘法分解示意图
Slip system Slip plane Slip direction Slip system Slip plane Slip direction
a1 ( 111 ) [ 01 1 ? ] b1 ( 1 ? 1 ? 1 ) [ 0 1 ? 1 ? ]
a2 ( 1 11 ) [ 1 ? 01 ] b2 ( 1 ? 1 ? 1 ) [ 10 1 ]
a3 ( 111 ) [ 1 1 ? 0 ] b3 ( 1 ? 1 ? 1 ) [ 1 ? 10 ]
c1 ( 1 ? 11 ) [ 0 1 1 ? ] d1 ( 1 1 ? 1 ) [ 0 1 ? 1 ? ]
c2 ( 1 ? 11 ) [ 101 ] d2 ( 1 1 ? 1 ) [ 1 ? 0 1 ]
c3 ( 1 ? 11 ) [ 1 ? 1 ? 0 ] d3 ( 1 1 ? 1 ) [ 110 ]
表1  孪生诱导塑性(TWIP)钢12个滑移系的滑移面和滑移方向
Twinning system Twinning plane Twinning direction Twinning system Twinning plane Twinning direction
t1 ( 111 ) [ 11 2 ? ] u1 ( 1 ? 1 ? 1 ) [ 112 ]
t2 ( 111 ) [ 2 ? 1 1 ] u2 ( 1 ? 1 ? 1 ) [ 2 1 ? 1 ]
t3 ( 111 ) [ 1 2 ? 1 ] u3 ( 1 ? 1 ? 1 ) [ 1 ? 21 ]
v1 ( 1 ? 11 ) [ 211 ] w1 ( 1 1 ? 1 ) [ 121 ]
v2 ( 1 ? 11 ) [ 1 2 1 ? ] w2 ( 1 1 ? 1 ) [ 2 1 1 ? ]
v3 ( 1 ? 11 ) [ 1 1 ? 2 ] w3 ( 1 1 ? 1 ) [ 1 ? 1 2 ]
表2  TWIP钢12个孪生系的孪生面和孪生方向
图2  不同Eular角加载示意图
图3  Eular角为(90°, 35°, 45°)和(0°, 45°, 0°) 的应力、孪晶体积分数及孪生剪切应变随应变的演化结果
图4  Eular角为(35°, 45°, 0°)和(59°, 37°, 63°)的应力及孪晶体积分数随应变的演化结果
图5  Eular角为(35°, 45°, 0°)时滑移系的滑移增量随应变的演化结果
图6  Eular角为(35°, 45°, 0°)时孪生系中孪生增量随应变的演化结果
[1] Senuma T. ISIJ Int, 2001; 41: 520
[2] Grassel O, Frommeyer G, Derder C, Hofmann H. J Phys IV France, 1997; 5: 383
[3] Grassel O, Kruger L, Frommeyer G, Meyer L W. Int J Plast, 2000; 16: 1391
[4] Tang D, Mi Z L, Chen Y L. Iron Steel, 2005; (4): 1
[4] (唐 荻, 米振莉, 陈雨来. 钢铁, 2005; (4): 1)
[5] Grassel O, Kruger L, Frommeyer G, Meyer L W. Int J Plast, 2000; 16: 1394
[6] Frommeyer G, Grassel O. Rev Metall CIT, 1997; 97: 32
[7] Wang X Y. Master Thesis, Northeastern University, Shenyang, 2011
[7] (王祥元. 东北大学硕士学位论文, 沈阳, 2011)
[8] Li W. Master Thesis, Northeastern University, Shenyang, 2006
[8] (李 卫. 东北大学硕士学位论文, 沈阳, 2006)
[9] Idrissi H, Renard K, Ryelandt L, Schryvers D, Jacques P J. Acta Mater, 2010; 58: 2476
[10] Gutierrez-Urrutia I, Raabe D. Acta Mater, 2011; 59: 6449
[11] Johnson G R, Cook W H. Eng Fract Mech, 1985; 21(1): 31
[12] Zerilli F J, Armstrong R W. J Appl Phys, 1987; 61: 1816
[13] Bouaziz O. Scr Mater, 2012; 66: 982
[14] Bouaziz O, Guelton N. Mater Sci Eng, 2001; A319: 246
[15] Sun C Y, Huang J, Guo N, Yang J. Acta Metall Sin, 2014; 50: 1115
[15] (孙朝阳, 黄 杰, 郭 宁, 杨 竞. 金属学报, 2014; 50: 1115)
[16] Taylor G I. Inst Met, 1938; 62: 307
[17] Rice J R. J Mech Phys Solids, 1971; 19: 433
[18] Asaro R J, Needleman A. Acta Mater, 1985; 33: 923
[19] Peirce D, Asaro R J, Needleman A. Acta Mater, 1982; 30: 1087
[20] Chin G Y, Hosford W F, Mendorf D R. Proc Royal Soc London Ser, 1969; 309A: 433
[21] Houtte V P. Acta Metall, 1978; 26: 591
[22] Choi S H, Shin E S, Seong B S. Acta Mater, 2007; 55: 4181
[23] Tome C N, Lebensohn R A, Kocks U F. Acta Metall Mater, 1991; 39: 2667
[24] Niewczas M, Basinski Z S, Basinski S J, Embury J D. Philos Mag, 2001; 81A: 1121
[25] Cao P, Fang G, Lei L P, Zeng P. Acta Metall Sin, 2007; 43: 913
[25] (曹 鹏, 方 刚, 雷丽萍, 曾 攀. 金属学报, 2007; 43: 913)
[26] Salem A A, Kalidindi S R, Semiatin S L. Acta Mater, 2005; 53: 3495
[27] Kalidindi S R. J Mech Phys Solids, 1998; 46: 267
[28] Van Houtte P, Li S, Seefeldt M, Delannay L. Int J Plast, 2005; 21: 589
[29] Wu X P. PhD Dissertation, Drexel University, 2006
[30] Wu X P, Kalidindi S R, Necker C. Acta Mater, 2007; 55: 42
[1] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[2] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[3] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[4] 王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
[5] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[6] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[7] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[8] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[9] 杨秦政, 杨晓光, 黄渭清, 石多奇. 粉末高温合金FGH4096的疲劳小裂纹扩展行为[J]. 金属学报, 2022, 58(5): 683-694.
[10] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[11] 彭俊, 金鑫焱, 钟勇, 王利. 基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响[J]. 金属学报, 2022, 58(12): 1600-1610.
[12] 郭昊函, 杨杰, 刘芳, 卢荣生. GH4169合金拘束相关的疲劳裂纹萌生寿命[J]. 金属学报, 2022, 58(12): 1633-1644.
[13] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[14] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[15] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.