Please wait a minute...
金属学报  2015, Vol. 51 Issue (12): 1507-1515    DOI: 10.11900/0412.1961.2015.00156
  本期目录 | 过刊浏览 |
耦合孪生的TWIP钢多晶体塑性变形行为研究*
孙朝阳1(),郭祥如1,郭宁1,杨竞1,黄杰1,2
1 北京科技大学机械工程学院, 北京 100083
2 宝山钢铁股份有限公司, 上海 201900
INVESTIGATION OF PLASTIC DEFORMATION BEHAVIOR ON COUPLING TWINNING OF POLYCRYSTAL TWIP STEEL
Chaoyang SUN1(),Xiangru GUO1,Ning GUO1,Jing YANG1,Jie HUANG1,2
1 School of Mechanical and Engineering, University of Science and Technology Beijing, Beijing 100083
2 Baoshao Iron & Steel Co. Ltd., Shanghai 201900
全文: PDF(1250 KB)   HTML
  
摘要: 

基于已建立的单晶体塑性模型, 建立了耦合孪生的孪生诱发塑性(TWIP)钢多晶体塑性模型, 该模型采用有限元多晶均匀化处理相邻晶粒间的几何协调和应力平衡条件, 获得了单晶体与多晶体状态变量的关系, 开发了基于ABAQUS/UMAT的计算程序. 采用EBSD研究了TWIP钢拉伸应变分别为0.27和0.6时的织构变化, 并对模型进行了应力应变及织构演化的验证. 用该本构模型分别建立了拉伸、压缩和扭转3种简单加载条件下的有限元模型, 分析了不同变形条件下的宏观力学响应及织构演化规律. 结果表明: 拉伸变形过程中, 应变硬化现象和织构密度水平随应变增加而增强; 在压缩过程中, 织构类型随应变增加而发生变化, 但是织构密度水平基本不变; 而在扭转过程中, 当扭转应变较小时, 基本无织构形成, 随着应变增加, 织构逐渐显现出来, 这是因为变形较小时, 圆柱沿径向方向内部变形量较小, 故织构不明显.

关键词 TWIP钢晶体塑性多晶均匀化织构预测塑性变形    
Abstract

Twinning induced plasticity (TWIP) steel exhibits high strength and exceptional plasticity due to the formation of extensive twin under mechanical load and its ultimate tensile strength and elongation to failure ductility-value can be as high as 5×104 MPa%, which provide a new choice for automobile in developing the lightweight and improving safety. Generally, due to the texture was formed during process of plastic deformation, metal material appear anisotropic behavior. The deformation mechanisms, responsible for this high strain hardening, are related to the strain-induced microstructural changes, which was dominated by slip and twinning. Different deformation mechanisms, which can be activated at different stages of deformation, will strongly influence the stress strain response and the evolution of the microstructure. In this work, to predict the texture evolution under different loading conditions and understand these two deformation mechanisms of plastic deformation process, a polycrystal plasticity constitutive model of TWIP steel coupling slip and twinning was developed based on the crystal plasticity theory and single crystal plasticity constitutive model. A polycrystal homogenization method to keep geometry coordination and stress balance adjacent grains was used, which connected the state variables of single crystal and polycrystal. And then the model was implemented and programed based on the ABAQUS/UMAT platform. The texture evolution was obtained by EBSD at strain 0.27 and 0.60, respectively. The finite element models of tensile, compression and torsion processes were built by using the constitutive model. The mechanical response and texture evolution during plastic deformation process of TWIP steel were analyzed. The results show that with the increasing of the strain, the strain hardening phenomenon and texture density enhanced during the tensile process. Although texture types changed, texture density unchanged during the compression process. Owing to deformation increasing along the diameter direction, there is no obvious texture inside the cylinder when torsion deformation is small, texture emerged and enhanced gradually with the increasing of strain.

Key wordsTWIP steel    crystal plasticity    polycrystal homogenization    texture prediction    plasticity deformation
    
基金资助:*国家自然科学基金项目51105029 和51575039, 国家自然科学基金委员会与中国工程物理研究院联合基金项目U1330121 及非线性力学国家重点实验室开放基金项目LNM201512 资助

引用本文:

孙朝阳,郭祥如,郭宁,杨竞,黄杰. 耦合孪生的TWIP钢多晶体塑性变形行为研究*[J]. 金属学报, 2015, 51(12): 1507-1515.
Chaoyang SUN, Xiangru GUO, Ning GUO, Jing YANG, Jie HUANG. INVESTIGATION OF PLASTIC DEFORMATION BEHAVIOR ON COUPLING TWINNING OF POLYCRYSTAL TWIP STEEL. Acta Metall Sin, 2015, 51(12): 1507-1515.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00156      或      https://www.ams.org.cn/CN/Y2015/V51/I12/1507

图1  多晶体塑性本构模型数值模拟的流程图
图2  孪生诱发塑性(TWIP)钢多晶体拉伸过程的有限元模型
图3  退火处理和晶粒取向随机分布后的TWIP钢在{100}, {110}和{111}面织构
图4  实验和模拟获得的应力、应变硬化率及孪晶体积分数的演化对比
图5  真应变为0.27和0.6时的织构图和ODF图的实验和模拟结果
图6  压缩和扭转过程应力、硬化率和孪晶体积分数随应变的演化
图7  TWIP钢压缩应变分别为0.8和1.52以及扭转应变分别为0.72和1.57时模拟的极图和ODF图
[1] Grassel O, Frommeyer G, Derder C, Hofmann H. J Phys IV France, 1997; 5: 383
[2] Shiekhelsouk M N, Favier V, Inal K, Cherkaoui M. Int J Plast, 2009; 25: 105
[3] Xie Q, Eyckens P, Vegter H, Moerman J, Van Bael A, Van Houtte P. Mater Sci Eng, 2013; A581: 66
[4] Barbier D, Gey N, Allain S, Bozzolo N, Humbert M. Mater Sci Eng, 2009; A500: 196
[5] Li Y Q, Zhu L C, Liu Y, Wei Y J, Wu Y X, Tang D, Mi Z L. J Mech Phys Solids,?2013; 61: 2588
[6] Johnson G R, Cook W H. Eng Fract Mech, 1985; 21: 31
[7] Zerilli F J, Armstrong R W. J Appl Phys, 1987; 61: 1816
[8] Sun C Y, Huang J, Guo N, Yang J. Acta Metall Sin, 2014; 50: 1115
[8] (孙朝阳, 黄 杰, 郭 宁, 杨 竞. 金属学报, 2014; 50: 1115)
[9] Sun C Y, Guo X R, Huang J, Guo N, Wang S W, Yang J. Acta Metall Sin, 2015; 51: 357
[9] (孙朝阳, 郭祥如, 黄 杰, 郭 宁, 王善伟, 杨 竞. 金属学报, 2015; 51: 357)
[10] Yang J, Huang J, Sun C Y, Guo N, Wang B. Chin J Eng, 2015; 37: 1076
[10] (杨 竞, 黄 杰, 孙朝阳, 郭 宁, 王 斌. 工程科学学报, 2015; 37: 1076)
[11] Sun C Y, Guo N, Fu M W, Wang S W. Int J Plast, 2016; 76: 186
[12] Sachs E. Z Ver Deut Ing, 1928; 72: 734
[13] Taylor G I. J Inst Met, 1938; 62: 307
[14] Lebensohn R A, Tome C N. Acta Metall Mater, 1993; 41: 2611
[15] Kalidindi S R, Bronkhorst C A, Anand L. J Mech Phys Solids, 1992; 40: 537
[16] Engler O, Huh M Y, Tome C N. Metall Mater Trans, 2000; 31A: 2299
[17] Raabe D, Zhao Z, Mao W. Acta Mater, 2002; 50: 4379
[18] Zhao Z, Kuchnicki S, Radovitzky R, Cuitino A. Acta Mater, 2007; 55: 2361
[19] Cao P, Fang G, Lei L P, Zeng P. Acta Metall Sin, 2007; 43: 913
[19] (曹 鹏, 方 刚, 雷丽萍, 曾 攀. 金属学报, 2007; 43: 913)
[20] Kocks U F. Metall Trans, 1970; 1: 1121
[21] Hirsch J, Lücke K. Acta Metall, 1988; 36: 2883
[22] Raabe D, Becker R C. Modell Simul Mater Sci Eng, 2000; 8: 445
[23] Li H W, Yang H. Trans Nonferrous Met Soc, 2012; 22: s222
[24] Saleh A A, Pereloma E V, Gazder A A. Mater Sci Eng, 2011; A528: 4537
[25] Roters F, Eisenlohr P, Hantcherli L, Tjahjanto D D, Bieler T R, Raabe D. Acta Mater, 2010; 58: 1152
[26] Salem A A, Kalidindi S R, Semiatin S L. Acta Mater, 2005; 53: 3495
[27] Barbier D, Favier V, Bolle B. Mater Sci Eng, 2012; A540: 212
[28] Guo Z X, Zhang Y F, Sui M L, Zhang Z. J Chin Electr Microsc Soc, 2012
(Suppl): 62
[28] (郭振玺, 张跃飞, 隋曼龄, 张 泽. 电子显微学报, 2012; (增刊): 62)
[29] Liu S, Qian L, Meng J, Ma P, Zhang F. Mater Sci Eng, 2015; A639: 425
[1] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[2] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[3] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[4] 李金许,王伟,周耀,刘神光,付豪,王正,阚博. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458.
[5] 陈翔,陈伟,赵洋,禄盛,金晓清,彭向和. 考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟[J]. 金属学报, 2020, 56(3): 361-373.
[6] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.
[7] 李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
[8] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[9] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[10] 吉宗威,卢松,于慧,胡青苗,Vitos Levente,杨锐. 第一性原理研究反位缺陷对TiAl基合金力学行为的影响[J]. 金属学报, 2019, 55(5): 673-682.
[11] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.
[12] 熊健,魏德安,陆宋江,阚前华,康国政,张旭. 位错密度梯度结构Cu单晶微柱压缩的三维离散位错动力学模拟[J]. 金属学报, 2019, 55(11): 1477-1486.
[13] 张海峰, 闫海乐, 贾楠, 金剑锋, 赵骧. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究[J]. 金属学报, 2018, 54(9): 1333-1342.
[14] 郭祥如, 孙朝阳, 王春晖, 钱凌云, 刘凤仙. 基于三维离散位错动力学的fcc结构单晶压缩应变率效应研究[J]. 金属学报, 2018, 54(9): 1322-1332.
[15] 孙军, 李苏植, 丁向东, 李巨. 氢化空位的基本性质及其对金属力学行为的影响[J]. 金属学报, 2018, 54(11): 1683-1692.