Please wait a minute...
金属学报  2020, Vol. 56 Issue (4): 459-475    DOI: 10.11900/0412.1961.2019.00399
  综述 本期目录 | 过刊浏览 |
综述:钢中亚稳奥氏体组织与疲劳性能关系
徐伟(),黄明浩,王金亮,沈春光,张天宇,王晨充
东北大学轧制技术及连轧自动化国家重点实验室 沈阳 110819
Review: Relations Between Metastable Austenite and Fatigue Behavior of Steels
XU Wei(),HUANG Minghao,WANG Jinliang,SHEN Chunguang,ZHANG Tianyu,WANG Chenchong
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
引用本文:

徐伟,黄明浩,王金亮,沈春光,张天宇,王晨充. 综述:钢中亚稳奥氏体组织与疲劳性能关系[J]. 金属学报, 2020, 56(4): 459-475.
Wei XU, Minghao HUANG, Jinliang WANG, Chunguang SHEN, Tianyu ZHANG, Chenchong WANG. Review: Relations Between Metastable Austenite and Fatigue Behavior of Steels[J]. Acta Metall Sin, 2020, 56(4): 459-475.

全文: PDF(6617 KB)   HTML
摘要: 

随着金属材料常规力学性能研究的不断深化与完善,疲劳、蠕变等长时间服役性能越来越成为制约金属材料发展的瓶颈问题。钢铁材料是最重要的工程结构材料之一,为阐明其疲劳失效机理,关于钢铁材料显微组织与疲劳性能关系的研究更是领域内长久以来的热点和难点问题。随着钢铁冶炼技术的日新月异,对于疲劳性能的组织影响因素研究也逐步从夹杂物向亚稳奥氏体、析出物等特征组织因素转变。因此,为进一步分析疲劳性能的组织影响因素研究的可行方向,本文着重综述了先进钢铁材料中亚稳奥氏体组织对疲劳性能的影响规律,总结了相关学者针对低周疲劳、高周疲劳等不同服役条件提出的亚稳奥氏体对疲劳性能的影响机制,并进一步以已有实验结果为数据支撑,通过支持向量机、BP神经网络等机器学习算法对亚稳奥氏体组织特征与疲劳性能关系进行了定量化评估,初步形成了亚稳奥氏体含量/稳定性与疲劳寿命的定量关系,为钢铁材料疲劳性能的机理研究提供基础与方向性指导。

关键词 先进钢铁材料亚稳奥氏体疲劳性能失效机制数据挖掘    
Abstract

With the deepening and improvement of the research on the conventional mechanical properties of metallic materials, the long-term service properties, such as fatigue and creep, showed more and more critical influence on the development of metallic materials. As one of the most important engineering structural materials, in order to clarify the fatigue failure mechanism, the research of steels on the relationship between microstructure and fatigue properties has been a hot and difficult problem for a long time. With the rapid development of smelting technology for steels, the research on the influencing factors of fatigue gradually changes from inclusions to microstructures as metastable austenite, precipitates, etc. Therefore, in order to further analyze the feasible direction of the research on the influence of microstructure on fatigue, this paper summarizes the influence and mechanism of metastable austenite on the fatigue property of advanced steel materials. The influence mechanism of metastable austenite on fatigue property by relevant scholars under different service conditions such as low cycle fatigue and high cycle fatigue was reviewed. Based on the experimental results, the relationship between metastable austenite and fatigue properties was quantitatively evaluated by machine learning. The quantitative relationship between the content/stability of metastable austenite and fatigue life was established, which could provide the basis direction for the further study of the mechanism of fatigue for steels.

Key wordsadvanced steel    metastable austenite    fatigue property    failure mechanism    machine learning
收稿日期: 2019-11-23     
ZTFLH:  TG111.8  
基金资助:国家自然科学基金优秀青年基金项目(51722101);国家重点研发计划项目(2017YFB0703001);牛顿高级学者基金项目(51961130389)
作者简介: 徐 伟,男,1979年生,教授
图1  引入亚稳奥氏体组织提高低周疲劳寿命[41,42]和亚稳奥氏体组织存在降低低周疲劳寿命[43]
图2  TRIP590和DP590钢在不同应变振幅下的应力振幅随循环次数的演变[44]
图3  不同奥氏体形态试样的应力幅[50]
图4  根据文献[53]得到的不同应变振幅下的应力振幅和循环次数以及不同疲劳周次下马氏体体积分数
图5  应力振幅随循环次数的变化[54,55]
图6  奥氏体含量与疲劳强度关系[4,5,8,56,57]
图7  亚稳奥氏体稳定性与疲劳强度的关系[47,48,59,65,66]
图8  3种不同稳定性奥氏体不锈钢的S-N曲线[67]
Fatigue featureLow cycle fatigueHigh cycle fatigue
of austenite

Volume fraction of austenite

Positive correlation[29,33,40,42,44]

(1) austenite has advantages on plasticity[42,44];

(2) the compressive stress and shear strain produced by martensitic transformation can reduce the plastic strain[33];

(3) energy absorption during TRIP process[40,44];

(4) crack closure caused by TRIP effect[40,44];

(5) resistance of stress softening during cyclic loading[29,42,44];

(6) the crack tip passivated by martensitic transformation[42]

Negative correlation[45,46,48]

(1) martensite transformation is easy to be used as the source of crack initiation during the TRIP process[45];

(2) martensite formed by TRIP effect is easy to be used as the path of crack growth[48];

(3) remarkable cyclic hardening caused by martensitic transformation[46]

Inconclusive[47]

There is a competitive relationship between the effect of inhibiting crack growth and inducing crack initiation

Positive correlation[46,54,56,57,58,59,60,61]

(1) austenite has more slip systems, which can slow down dislocation entanglement and reduce local stress concentration, thus delaying the crack initiation[46,56,57,58,59,60];

(2) DARA effect[61];

(3) the existence of austenite would resist the dislocation moving[46];

(4) energy absorption during TRIP process[54,57];

(5) strengthening by TRIP effect[58];

(6) the higher amount of retained austenite brings more obstacles for fatigue crack growth[56,57];

(7) crack closure caused by volume expansion during the DIMT process[46,56]

Negative correlation[48,62,63]

Showed negative correlation in TRIP steel and martensitic precipitation hardening stainless steel, but lack of theoretical explanation

Stability of austenite

Positive correlation[47,49]

(1) the film-like retained austenite is beneficial to prevent crack growth[49];

(2) it can avoid the cracks caused by the stress-strain mismatch between the austenite and matrix due to its high hardness[49];

(3) the film-like austenite can also bring more RICC effect[49], and prevent the crack initiation caused by elastic mismatch between the new formed and previous martensite[47];

(4) the unstable austenite exhibits significant cycle hardening during cycle loading, which is not conducive to the stability of cycle stress[49]

Negative correlation[54]

The block retained austenite performs good compatibility deformation ability

Positive correlation[43,49,59,60,65]

(1) the highly stable austenite transformed to martensite after crack initiation which is benefit to fatigue properties[65];

(2) film-like austenite brings more RICC effect[49];

(3) production of film-like austenite would refine the microstructure[60];

(4) the calculated results of FGA show that the blocky-like austenite plays negative role on crack initiation[59];

(5) the large-size austenite is easy to transform into brittle martensite under elastic deformation, which is unfavorable to fatigue stress[43]

Negative correlation[67]

The unstable austenite performs great compatible deformation ability and plasticity

表1  奥氏体组织特征对疲劳性能影响汇总[29,33,40,42,43,44,45,46,47,48,49,54,56,57,58,59,60,61,62,63,65,67]
图9  不同经验公式下奥氏体的堆垛层错能(γSF)、30%应变条件下50%奥氏体转变为马氏体的温度(Md30)与低周疲劳寿命Pearson相关性系数(ρXY)的关系
图10  高周疲劳强度与奥氏体含量的关系[4,5,28,57,59,60,66,83,84,85,86,87,88,89,90,91,92,93,94,95,96]
图11  根据支持向量机(SVM)和反向传播神经网络(BPNN)计算的奥氏体体积分数(fv)、奥氏体相内C的质量分数(fm)及拉伸性能与疲劳强度的平均相关系数(R2)
[1] Tóth L, Yarema S Y. Formation of the science of fatigue of metals. Part 1. 1825~1870 [J]. Mater. Sci., 2006, 42: 673
[2] Yarema S Y. Formation of the science of fatigue of metals. Part 2. 1870~1940 [J]. Mater. Sci., 2006, 42: 814
[3] Chen P Y, Lee C, Wang S Y, et al. Fatigue behavior of high-entropy alloys: A review [J]. Sci. China Technol. Sci., 2018, 61: 168
[4] Sugimoto K I, Tsuruta J, Song S M. Fatigue strength of formable ultra high-strength TRIP-aided steels with bainitic ferrite matrix [J]. Key Eng. Mater., 2007, 345-346: 247
[5] Yoshikawa N, Kobayashi J, Sugimoto K I. Notch-fatigue properties of advanced TRIP-aided bainitic ferrite steels [J]. Metall. Mater. Trans., 2012, 43A: 4129
[6] Lewis S R, Lewis R, Goodwin P S, et al. Full-scale testing of laser clad railway track; Case study—Testing for wear, bend fatigue and insulated block joint lipping integrity [J]. Wear, 2017, 376-377: 1930
[7] Guo P C, Qian L H, Meng J Y, et al. Monotonic tension and tension-compression cyclic deformation behaviors of high manganese austenitic TWIP steel [J]. Acta Metall. Sin., 2014, 50: 415
[7] 郭鹏程, 钱立和, 孟江英等. 高锰奥氏体TWIP钢的单向拉伸与拉压循环变形行为 [J]. 金属学报, 2014, 50: 415
[8] Zhang Y B, Zhang L M, Zhang J W, et al. Effect of anodizing treatment on bending fatigue properties of 2014-T6 aluminium alloy [J]. Acta Metall. Sin., 2014, 50: 715
[8] 张艳斌, 张立民, 张继旺等. 阳极氧化处理对2014-T6铝合金弯曲疲劳性能的影响 [J]. 金属学报, 2014, 50: 715
[9] Ma Y F, Song Z M, Zhang S Q, et al. Evaluation of fatigue properties of CA6NM martensite stainless steel using miniature specimens [J]. Acta Metall. Sin., 2018, 54: 1359
[9] 马也飞, 宋竹满, 张思倩等. 小尺度CA6NM马氏体不锈钢样品疲劳性能评价研究 [J]. 金属学报, 2018, 54: 1359
[10] Yu H C, Zhang Y J, Sun Y G, et al. Near threshold fatigue crack growth behavior in stainless steel under cyclic torsion [J]. Acta Metall. Sin., 2005, 41: 721
[10] 于慧臣, 张岩基, 孙燕国等. 不锈钢在循环扭转载荷下近门槛值的疲劳裂纹扩展行为 [J]. 金属学报, 2005, 41: 721
[11] Yu H C, Sun Y G, Zhang Y J, et al. Near-threshold fatigue crack propagation in stainless steel under combined torsion and tension [J]. Acta Metall. Sin., 2006, 42: 186
[11] 于慧臣, 孙燕国, 张岩基等. 不锈钢在扭转/拉伸复合载荷下近门槛值的疲劳裂纹扩展行为 [J]. 金属学报, 2006, 42: 186
[12] Noyan I C, Cohen J B. An X-Ray diffraction study of the residual stress-strain distributions in shot-peened two-phase brass [J]. Mater. Sci. Eng., 1985, 75: 179
[13] Jones B F. The influence of crack depth on the fatigue crack propagation rate for a marine steel in seawater [J]. J. Mater. Sci., 1982, 17: 499
[14] Lv Y, Lei L Q, Sun L N. Effect of shot peening on the fatigue resistance of laser surface melted 20CrMnTi steel gear [J]. Mater. Sci. Eng., 2015, A629: 8
[15] Sakai T, Sato Y, Nagano Y, et al. Effect of stress ratio on long life fatigue behavior of high carbon chromium bearing steel under axial loading [J]. Int. J. Fatigue, 2006, 28: 1547
[16] Basquin O H. The exponential law of endurance tests [J]. Am. Soc. Test. Mater., 1910, 10: 625
[17] Coffin L F. A study of the effects of cyclic thermal stresses on a ductile metal [J]. Trans. ASTM, 1954, 76: 931
[18] Manson S S. Behavior of materials under conditions of thermal stress [R]. Washington, USA: National Advisory Committee for Aeronautics, 1953
[19] Zhang Z F, Liu R, Zhang Z J, et al. Exploration on the unified model for fatigue properties prediction of metallic materials [J]. Acta Metall. Sin., 2018, 54: 1693
[19] 张哲峰, 刘 睿, 张振军等. 金属材料疲劳性能预测统一模型探索 [J]. 金属学报, 2018, 54: 1693
[20] Drar H. Fatigue fracture of MnS-containing powder metallurgy steels [J]. J. Mater. Sci. Lett., 1996, 15: 1781
[21] Yang C Y, Liu P, Luan Y K, et al. Study on transverse-longitudinal fatigue properties and their effective-inclusion-size mechanism of hot rolled bearing steel with rare earth addition [J]. Int. J. Fatigue, 2019, 128: 105193
[22] Karr U, Sch?nbauer B, Fitzka M, et al. Inclusion initiated fracture under cyclic torsion very high cycle fatigue at different load ratios [J]. Int. J. Fatigue, 2019, 122: 199
[23] Wang W, Liu H J, Zhu C C, et al. Micromechanical analysis of gear fatigue-ratcheting damage considering the phase state and inclusion [J]. Tribol. Int., 2019, 136: 182
[24] Damon J, Hanemann T, Dietrich S, et al. Orientation dependent fatigue performance and mechanisms of selective laser melted maraging steel X3NiCoMoTi18-9-5 [J]. Int. J. Fatigue, 2019, 127: 395
[25] Bergengren Y, Larsson M, Melander A. The influence of machining defects and inclusions on the fatigue properties of a hardened spring steel [J]. Fatigue Fract. Eng. Mater. Struct., 1995, 18: 1071
[26] Yao J, Qu X H, He X B, et al. Inclusion-controlled high cycle fatigue behavior of a high V alloyed powder metallurgy cold-working tool steel [J]. Mater. Sci. Eng., 2011, A528: 4180
[27] Holzgruber W, Holzgruber H. Production of high quality billets with the new electroslag rapid remelting process [J]. MPT Int., 1996, 19: 48
[28] Zhao P, Liu Z, Misra R D K, et al. Non-inclusion induced crack initiation in multiphase high-strength steel during very high cycle fatigue [J]. Mater. Sci. Eng., 2018, A712: 406
[29] Glage A, Weidner A, Biermann H. Effect of austenite stability on the low cycle fatigue behavior and microstructure of high alloyed metastable austenitic cast TRIPsteels [J]. Procedia Eng., 2010, 2: 2085
[30] Li D F, Barrett R A, O'Donoghue P E, et al. A multi-scale crystal plasticity model for cyclic plasticity and low-cycle fatigue in a precipitate-strengthened steel at elevated temperature [J]. J. Mech. Phys. Solids, 2017, 101: 44
[31] Zhang R J, Luan D C, Tian H L, et al. Effect of isothermal treatment on contact fatigue of a new bainite steel for frog [J]. Heat Treat. Met., 2015, 40(12): 106
[31] 张仁进, 栾道成, 田翰林等. 等温处理对辙叉用新型贝氏体钢接触疲劳性能的影响 [J]. 金属热处理, 2015, 40(12): 106
[32] Cheng X, Petrov R, Zhao L, et al. Fatigue crack growth in TRIP steel under positive R-ratios [J]. Eng. Fract. Mech., 2008, 75: 739
[33] Biswas S, Sivaprasad S, Narasaiah N, et al. Load history effect on FCGR behaviour of 304LN stainless steel [J]. Int. J. Fatigue, 2007, 29: 786
[34] Matsuoka Y, Iwasaki T, Nakada N, et al. Effect of grain size on thermal and mechanical stability of austenite in metastable austenitic stainless steel [J]. ISIJ Int., 2013, 53: 1224
[35] Umemoto M, Owen W S. Effects of austenitizing temperature and austenite grain size on the formation of athermal martensite in an iron-nickel and an iron-nickel-carbon alloy [J]. Metall. Trans., 1974, 5: 2041
[36] Lu J, Yu H, Duan X N, et al. Study of deformation behavior and microstructural evolution in multiphase steel [J]. Materials, 2018, 11: 2285
[37] Chen J, Lv M Y, Tang S, et al. Correlation between mechanical properties and retained austenite characteristics in a low-carbon medium manganese alloyed steel plate [J]. Mater. Charact., 2015, 106: 108
[38] Sun C, Liu S L, Misra R D K, et al. Influence of intercritical tempering temperature on impact toughness of a quenched and tempered medium-Mn steel: Intercritical tempering versus traditional tempering [J]. Mater. Sci. Eng., 2018, A711: 484
[39] Lehnhoff G R, Findley K O. Influence of austenite stability on predicted cyclic stress-strain response of metastable austenitic steels [J]. Procedia Eng., 2011, 10: 1097
[40] Huo C Y, Gao H L. Strain-induced martensitic transformation in fatigue crack tip zone for a high strength steel [J]. Mater. Charact., 2005, 55: 12
[41] Hilditch T B, Timokhina I B, Robertson L T, et al. Cyclic deformation of advanced high-strength steels: Mechanical behavior and microstructural analysis [J]. Metall. Mater. Trans., 2009, 40A: 342
[42] Padmanabhan K A, Sankaran S. Fatigue behavior of a multiphase medium carbon V-bearing microalloyed steel processed through two thermomechanical routes [J]. J. Mater. Process. Technol., 2008, 207: 293
[43] Hilditch T, Beladi H, Hodgson P, et al. Role of microstructure in the low cycle fatigue of multi-phase steels [J]. Mater. Sci. Eng., 2012, A534: 288
[44] Hu Z G, Zhu P, Meng J. Fatigue properties of transformation-induced plasticity and dual-phase steels for auto-body lightweight: Experiment, modeling and application [J]. Mater. Des., 2010, 31: 2884
[45] Tsuzaki K, Nakanishi E, Maki T, et al. Low-cycle fatigue behavior in metastable austenitic steel accompanying deformation-induced martensitic transformation [J]. Trans. Iron Steel Inst. Jpn., 1983, 23: 834
[46] Biermann H, Glage A, Droste M. Influence of temperature on fatigue-induced martensitic phase transformation in a metastable CrMnNi-steel [J]. Metall. Mater. Trans., 2016, 47A: 84
[47] Zhang Z, Koyama M, Wang M M, et al. Effects of lamella size and connectivity on fatigue crack resistance of TRIP-maraging steel [J]. Int. J. Fatigue, 2017, 100: 176
[48] Kula P, Dybowski K, Lipa S, et al. Effect of the content of retained austenite and grain size on the fatigue bending strength of steels carburized in a low-pressure atmosphere [J]. Met. Sci. Heat Treat., 2014, 56: 440
[49] Sarosiek A M, Owen W S. The work hardening of dual-phase steels at small plastic strains [J]. Mater. Sci. Eng., 1984, 66: 13
[50] Kang J, Zhang F C, Long X Y, et al. Low cycle fatigue behavior in a medium-carbon carbide-free bainitic steel [J]. Mater. Sci. Eng., 2016, A666: 88
[51] Qian Z, Qian L H, Meng J Y, et al. Low-cycle fatigue behavior and microstructural evolution in a low-carbon carbide-free bainitic steel [J]. Mater. Des., 2015, 85: 487
[52] Ackermann S, Kulawinski D, Henkel S, et al. Biaxial in-phase and out-of-phase cyclic deformation and fatigue behavior of an austenitic TRIP steel [J]. Int. J. Fatigue, 2014, 67: 123
[53] Smaga M, Walther F, Eifler D. Deformation-induced martensitic transformation in metastable austenitic steels [J]. Mater. Sci. Eng., 2008, A483-484: 394
[54] Zhang F C, Long X Y, Kang J, et al. Cyclic deformation behaviors of a high strength carbide-free bainitic steel [J]. Mater. Des., 2016, 94: 1
[55] Hahnenberger F, Smaga M, Eifler D. Microstructural investigation of the fatigue behavior and phase transformation in metastable austenitic steels at ambient and lower temperatures [J]. Int. J. Fatigue, 2014, 69: 36
[56] Melado A C, Nishikawa A S, Goldenstein H, et al. Effect of microstructure on fatigue behaviour of advanced high strength ductile cast iron produced by quenching and partitioning process [J]. Int. J. Fatigue, 2017, 104: 397
[57] Abareshi M, Emadoddin E. Effect of retained austenite characteristics on fatigue behavior and tensile properties of transformation induced plasticity steel [J]. Mater. Des., 2011, 32: 5099
[58] Baudry G, Pineau A. Influence of strain-induced martensitic transformation on the low-cycle fatigue behavior of a stainless steel [J]. Mater. Sci. Eng., 1977, 28: 229
[59] Gao G H, Zhang B X, Cheng C, et al. Very high cycle fatigue behaviors of bainite/martensite multiphase steel treated by quenching-partitioning-tempering process [J]. Int. J. Fatigue, 2016, 92: 203
[60] Zhao P, Zhang B, Cheng C, et al. The significance of ultrafine film-like retained austenite in governing very high cycle fatigue behavior in an ultrahigh-strength Mn-Si-Cr-C steel [J]. Mater. Sci. Eng., 2015, A645: 116
[61] Wang Y, Zhang K, Guo Z H, et al. A new effect of retained austenite on ductility enhancement in high strength bainitic steel [J]. Mater. Sci. Eng., 2012, A552: 288
[62] Nakagawa H, Miyazaki T. Effect of retained austenite on the microstructure and mechanical properties of martensitic precipitation hardening stainless steel [J]. J. Mater. Sci., 1999, 34: 3901
[63] Seong B S, Shin E J, Han Y S, et al. Effect of retained austenite and solute carbon on the mechanical properties in TRIP steels [J]. Physica, 2004, 350B: E467
[64] Marines-Garcia I, Paris P C, Tada H, et al. Fatigue crack growth from small to long cracks in VHCF with surface initiations [J]. Int. J. Fatigue, 2007, 29: 2072
[65] Christodoulou P I, Kermanidis A T, Krizan D. Fatigue behavior and retained austenite transformation of Al-containing TRIP steels [J]. Int. J. Fatigue, 2016, 91: 220
[66] Haidemenopoulos G N, Kermanidis A T, Malliaros C, et al. On the effect of austenite stability on high cycle fatigue of TRIP 700 steel [J]. Mater. Sci. Eng., 2013, A573: 7
[67] Hilgendorff P M, Grigorescu A C, Zimmermann M, et al. Cyclic deformation behavior of austenitic Cr-Ni-steels in the VHCF regime: Part I—Experimental study [J]. Int. J. Fatigue, 2016, 93: 250
[68] Shih Y F, Wang Y R, Lin K L, et al. Improving non-destructive concrete strength tests using support vector machines [J]. Materials, 2015, 8: 7169
[69] Bélisle E, Huang Z, Le Digabel S, et al. Evaluation of machine learning interpolation techniques for prediction of physical properties [J]. Comput. Mater. Sci., 2015, 98: 170
[70] Shandiz M A, Gauvin R. Application of machine learning methods for the prediction of crystal system of cathode materials in lithium-ion batteries [J]. Comput. Mater. Sci., 2016, 117: 270
[71] Xue D Z, Balachandran P V, Hogden J, et al. Accelerated search for materials with targeted properties by adaptive design [J]. Nat. Commun., 2016, 7: 11241
[72] Nikulin I, Sawaguchi T, Ogawa K, et al. Effect of γ to ε martensitic transformation on low-cycle fatigue behaviour and fatigue microstructure of Fe-15Mn-10Cr-8Ni-xSi austenitic alloys [J]. Acta Mater., 2016, 105: 207
[73] Yang F Q, Song R B, Li Y P, et al. Tensile deformation of low density duplex Fe-Mn-Al-C steel [J]. Mater. Des., 2015, 76: 32
[74] Xing L, Chen L Q, Zhao Y, et al. Influence of manganese content on ε-/α′-martensitic transformation and tensile properties of low-C high-Mn TRIP steels [J]. Mater. Des., 2018, 142: 190
[75] Lee S I, Cho Y, Hwang B. Effect of grain size on the tensile properties of an austenitic high-manganese steel [J]. Korean J. Met. Mater. Res., 2016, 26: 325
[76] Talonen J, H?nninen H. Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels [J]. Acta Mater., 2007, 55: 6108
[77] Hwang B, Lee T H, Park S J, et al. Correlation of austenite stability and ductile-to-brittle transition behavior of high-nitrogen 18Cr-10Mn austenitic steels [J]. Mater. Sci. Eng., 2011, A528: 7257
[78] Kirch W. Encyclopedia of Public Health [M]. Dordrecht: Springer Netherlands, 2008: 1090
[79] Wang J J, Van Der Zwaag S. Stabilization mechanisms of retained austenite in transformation-induced plasticity steel [J]. Metall. Mater. Trans., 2001, 32A: 1527
[80] Wang J L, Xi X H, Li Y, et al. New insights on nucleation and transformation process in temperature-induced martensitic transformation [J]. Mater. Charact., 2019, 151: 267
[81] Zou Y, Xu Y B, Hu Z P, et al. Austenite stability and its effect on the toughness of a high strength ultra-low carbon medium manganese steel plate [J]. Mater. Sci. Eng., 2016, A675: 153
[82] Olson G B, Cohen M. Stress-assisted isothermal martensitic transformation: Application to TRIP steels [J]. Metall. Trans., 1982, 13A: 1907
[83] de Diego-Calderón I, Rodriguez-Calvillo P, Lara A, et al. Effect of microstructure on fatigue behavior of advanced high strength steels produced by quenching and partitioning and the role of retained austenite [J]. Mater. Sci. Eng., 2015, A641: 215
[84] Lin C K, Hung T P. Influence of microstructure on the fatigue properties of austempered ductile irons—II. Low-cycle fatigue [J]. Int. J. Fatigue, 1996, 18: 309
[85] Zhang Z, Koyama M, Wang M M, et al. Fatigue resistance of laminated and non-laminated TRIP-maraging steels: Crack roughness vs tensile strength [J]. Metall. Mater. Trans., 2019, 50A: 1142
[86] Qi X Y, Du L X, Hu J, et al. High-cycle fatigue behavior of low-C medium-Mn high strength steel with austenite-martensite submicron-sized lath-like structure [J]. Mater. Sci. Eng., 2018, A718: 477
[87] Song S M, Sugimoto K I, Kandaka S, et al. Effects of prestraining on high-cycle fatigue strength of high-strength low alloy TRIP-aided steels [J]. J. Soc. Mater. Sci. Jpn., 2003, 52: 223
[88] D?nges B, Giertler A, Krupp U, et al. Significance of crystallographic misorientation at phase boundaries for fatigue crack initiation in a duplex stainless steel during high and very high cycle fatigue loading [J]. Mater. Sci. Eng., 2014, A589: 146
[89] Yu Y, Gu J L, Xu L, et al. Very high cycle fatigue behaviors of Mn-Si-Cr series bainite/martensite dual phase steels [J]. Mater. Des., 2010, 31: 3067
[90] Zhao P, Wang X R, Yan E, et al. The influence of inclusion factors on ultra-high cyclic deformation of a dual phase steel [J] Mater. Sci. Eng., 2019, A754: 275
[91] Zhao P, Liu Z, Du F, et al. Ultra-high cycle fatigue property of a multiphase steel microalloyed with niobium [J]. Mater. Sci. Eng., 2018, A718: 1
[92] Zhao P, Cheng C, Gao G, et al. The potential significance of microalloying with niobium in governing very high cycle fatigue behavior of bainite/martensite multiphase steels [J]. Mater. Sci. Eng., 2016, A650: 438
[93] Sugimoto K I, Fiji D, Yoshikawa N. Fatigue strength of newly developed high-strength low alloy TRIP-aided steels with good hardenability [J]. Procedia Eng., 2010, 2: 359
[94] Kobayashi J, Yoshikawa N, Sugimoto K I. Notch-fatigue strength of advanced TRIP-aided martensitic steels [J]. ISIJ Int., 2013, 53: 1479
[95] Sugimoto K I, Kobayashi M, Inoue K, et al. Fatigue strength of TRIP-aided bainitic sheet steels [J]. Tetsu Hagané, 1998, 84: 559
[95] 杉本 公一, 小林 光征, 井上 一也等. TRIP型ベイナイト鋼板の疲労強度特性 [J]. 鉄と鋼, 1998, 84: 559
[96] Sugimoto K I. Fracture strength and toughness of ultra high strength TRIP aided steels [J]. Mater. Sci. Technol., 2009, 25: 1108
[97] Yu Y, Gu J L, Shou F L, et al. Competition mechanism between microstructure type and inclusion level in determining VHCF behavior of bainite/martensite dual phase steels [J]. Int. J. Fatigue, 2011, 33: 500
[1] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[2] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[3] 谢建新, 宿彦京, 薛德祯, 姜雪, 付华栋, 黄海友. 机器学习在材料研发中的应用[J]. 金属学报, 2021, 57(11): 1343-1361.
[4] 王存宇,常颖,周峰峦,曹文全,董瀚,翁宇庆. 高强度高塑性第三代汽车钢的M3组织调控理论与技术[J]. 金属学报, 2020, 56(4): 400-410.
[5] 俞峰,陈兴品,徐海峰,董瀚,翁宇庆,曹文全. 滚动轴承钢冶金质量与疲劳性能现状及高端轴承钢发展方向[J]. 金属学报, 2020, 56(4): 513-522.
[6] 张哲峰, 刘睿, 张振军, 田艳中, 张鹏. 金属材料疲劳性能预测统一模型探索[J]. 金属学报, 2018, 54(11): 1693-1704.
[7] 马也飞, 宋竹满, 张思倩, 陈立佳, 张广平. 小尺度CA6NM马氏体不锈钢样品疲劳性能评价研究[J]. 金属学报, 2018, 54(10): 1359-1367.
[8] 王志胜, 陈祥, 李言祥, 张华伟, 刘源. B对铜合金压铸热作模具钢高温力学及热疲劳性能的影响*[J]. 金属学报, 2015, 51(5): 519-526.
[9] 杨金侠, 孙元, 金涛, 孙晓峰, 胡壮麒. 一种细晶铸造镍基高温合金的组织与力学性能*[J]. 金属学报, 2014, 50(7): 839-844.
[10] 张艳斌, 张立民, 张继旺, 曾京. 阳极氧化处理对2014-T6铝合金弯曲疲劳性能的影响*[J]. 金属学报, 2014, 50(6): 715-721.
[11] 安祥海, 吴世丁, 张哲峰. 层错能对纳米晶Cu-Al合金微观结构、拉伸及疲劳性能的影响*[J]. 金属学报, 2014, 50(2): 191-201.
[12] 罗庆洪 李春志 娄艳芝 赵振业. 磨削工艺对渗碳M50NiL钢表面变质层微观结构和性能及疲劳性能影响[J]. 金属学报, 2012, 48(2): 194-198.
[13] 刘恩泽 郑志 佟健 宁礼奎 管秀荣. DZ468合金高周疲劳性能研究[J]. 金属学报, 2010, 46(6): 708-714.
[14] 王再友; 朱金华 . 亚稳奥氏体金属抗空蚀性能及其主要控制因素[J]. 金属学报, 2003, 39(3): 273-277 .
[15] 艾素华;王中光;张匀;胡壮麒. Al-Li合金的疲劳性能[J]. 金属学报, 1993, 29(1): 33-38.