Please wait a minute...
金属学报  2015, Vol. 51 Issue (6): 651-658    DOI: 10.11900/0412.1961.2014.00680
  论文 本期目录 | 过刊浏览 |
一种高锰奥氏体TWIP钢的高温热变形与再结晶行为*
袁晓云,陈礼清()
东北大学轧制技术及连轧自动化国家重点实验室, 沈阳 110819
HOT DEFORMATION AT ELEVATED TEMPERATURE AND RECRYSTALLIZATION BEHAVIOR OF A HIGH MANGANESE AUSTENITIC TWIP STEEL
Xiaoyun YUAN,Liqing CHEN()
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
全文: PDF(9930 KB)   HTML
摘要: 

在变形温度为1223~1423 K及应变速率为0.01~10 s-1的条件下, 利用MMS-300热模拟试验机开展单道次压缩变形实验, 结合SEM-EBSD和TEM等观察分析技术, 研究了一种高锰奥氏体孪晶诱发塑性(TWIP)钢的高温热变形及再结晶行为, 对其动态再结晶过程中的组织演变规律及其与应力-应变曲线的相关性进行了分析和表征. 结果表明, 该高锰奥氏体TWIP钢的热变形行为对应变速率较敏感; 当应变速率低于0.1 s-1时, 热变形过程中发生动态再结晶; 当应变速率高于1 s-1时, 发生动态回复. 通过回归计算建立了该高锰奥氏体TWIP钢的热变形本构方程, 分析认为动态再结晶过程中的组织演变规律与其应力-应变曲线密切相关. 随着应变量的增加, 晶界迁移诱导再结晶形核; 形变量进一步增加, 产生大量亚晶界; 相邻亚晶界上的位错攀移和滑移等运动使晶界合并, 导致再结晶晶粒形成.

关键词 TWIP钢热变形动态再结晶本构方程组织演变    
Abstract

Stainless steel is widely used in both industrial production and daily-life due to its anti-corrosion behavior. In view of the shortage in Cr and Ni resources, there has been an increasing interest in developing low-cost stainless steels for several decades. Under the frame of replacing Ni and Cr with Mn and Al, respectively, a recent study indicates that Fe-Mn-Al-C austenitic twinning-induced plasticity (TWIP) steel possesses good comprehensive properties and excellent resistance to oxidation that make it potential in partially replacing conventional austenitic stainless steels. As a viable alternative to low-cost austenitic stainless steel, a new alloy system of high-manganese low-chromium nitrogen-containing TWIP steel was developed in this study. Considering its corrosion resistance, the alloy is not completely free of chromium, yet the Cr content is relatively low. Nitrogen is added, because it is a strong austenite stabilizer that can reduce the tendency to form ferrite and deformation-induced a'- and e-martensites, thereby reducing the amount of nickel required in austenitic stainless steel. Furthermore, nitrogen is beneficial for pitting corrosion resistance. In this study, hot deformation and recrystallization behaviors of this high manganese austenitic TWIP steel were investigated by single-pass compression tests on MMS-300 thermo-mechanical simulator at temperature ranging from 1223 K to 1423 K and strain rate ranging from 0.01 s-1 to 10 s-1. Microstructure evolution during dynamic recrystallization and the correlation of microstructure change to the stress-strain response were further analyzed by using TEM and SEM equipped with EBSD. The results show that the hot deformation behavior of this steel is more sensitive to deformation rate. Dynamic recrystallization occurs during hot deformation when deformation rate is lower than 0.1 s-1, while dynamic recovery takes place at deformation rate higher than 1 s-1. The hot deformation constitutive equation of the high manganese austenitic TWIP steel was established by regression analysis. There is a close correlation between microstructure evolution and stress-strain curve during dynamic recrystallization. With the increase of strain, the grain boundary migration leads to the nucleation of recrystallization. Sub-grain boundary was also formed with increasing the strain. Dislocations climbing or slipping on the adjacent sub-grain boundary lead to the grain boundary merging, and then, new austenitic grains formed.

Key wordsTWIP steel    hot deformation    dynamic recrystallization    constitutive equation    microstructure evolution
    
基金资助:*国家自然科学基金项目 51271051和51304045资助

引用本文:

袁晓云, 陈礼清. 一种高锰奥氏体TWIP钢的高温热变形与再结晶行为*[J]. 金属学报, 2015, 51(6): 651-658.
Xiaoyun YUAN, Liqing CHEN. HOT DEFORMATION AT ELEVATED TEMPERATURE AND RECRYSTALLIZATION BEHAVIOR OF A HIGH MANGANESE AUSTENITIC TWIP STEEL. Acta Metall Sin, 2015, 51(6): 651-658.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2014.00680      或      https://www.ams.org.cn/CN/Y2015/V51/I6/651

图1  高锰奥氏体孪晶诱发塑性钢(TWIP钢)在不同变形条件下的真应力-真应变曲线
图2  高锰奥氏体孪晶诱发塑性钢(TWIP钢)在不同变形条件下的真应力-真应变曲线
图3  高锰奥氏体TWIP钢在时不同变形温度下的SEM像
图4  n值残差平方和随a的变化曲线
图5  峰值应力与应变速率和峰值应力与变形温度的关系
图6  lnZ与ln[sinh(as)]的关系曲线
图7  高锰奥氏体TWIP钢在1323 K及0.05 s-1的变形条件下不同应变量时晶界分布的EBSD图
图8  高锰奥氏体TWIP钢在1323 K及0.05 s-1的变形条件下不同真应变时动态再结晶组织的TEM像
[1] Wang C J, Chang Y C. Mater Chem Phys, 2002; 76: 151
[2] Gr?ssel O, Kruger L, Frommeyer G, Meyer L W. Int J Plast, 2000; 16: 1391
[3] Brüx U, Frommeyer G, Gr?ssel O, Meyer L W, Weise A. Steel Res Int, 2002; 73: 294
[4] Chen L Q, Zhao Y, Qin X M. Acta Metall Sin (Engl Lett), 2013; 26: 1
[5] Chung K, Ahn K, Yoo D H, Chung K H, Seo M H. Int J Plast, 2011; 27: 52
[6] Bouaziz O, Allain S, Scott C P, Cugy P, Barbier D. Curr Opin Solid State Mater Sci, 2011; 15: 141
[7] Barbier D, Gey N, Allain S, Bozzolo N, Humbert M. Mater Sci Eng, 2009; A500: 196
[8] Kibey S, Liu J B, Curtis M J, Johnson D D, Sehitoglu H. Acta Mater, 2006; 54: 2991
[9] Huang B X, Wang X D, Rong Y H. Mater Sci Eng, 2006; A438-440: 306
[10] Yuan X Y, Yao Y T, Chen L Q. Acta Metall Sin (Engl Lett), 2014; 27: 401
[11] Yuan X Y, Chen L Q, Zhao Y, Di H S, Zhu F X. J Mater Process Technol, 2015; 217: 278
[12] Ding H, Tang Z Y, Li W, Wang M, Song D. J Iron Steel Res, 2006; 13(6): 66
[13] Chen T H, Yang J R. Mater Sci Eng, 2001; A311: 28
[14] Zhang J Q, Di H S, Wang X Y, Cao Y, Zhang J C, Ma T J. Mater Des, 2013; 44: 354
[15] Zheng M Y, Wu K, Liang M, Kamado S, Kojima Y. Mater Sci Eng, 2004; A372: 66
[16] Li A B, Geng L, Zhang J, Xu H Y, Zheng Z Z, Yao C K. Mater Chem Phys, 2004; 84: 29
[17] Venugopal S, Mannan S L, Rodriguez P. J Mater Sci, 2004; 39: 5557
[18] Cao Y, Di H S, Zhang J C, Zhang J Q. Acta Metall Sin, 2012; 48: 1175 (曹 宇, 邸红双, 张洁岑, 张敬奇. 金属学报, 2012; 48: 1175)
[19] Wang Z X. Controlled Rolling and Controlled Cooling. Beijing: Metallurgical Industry Press, 1988: 14 (王占学. 控制轧制与控制冷却. 北京: 冶金工业出版社, 1988:14)
[20] McQueen H J, Ryan N D. Mater Sci Eng, 2002; A322: 43
[21] Chen L Q, Zhao Y, Xu Q X, Liu X H. Acta Metall Sin, 2010; 46: 1215 (陈礼清, 赵 阳, 徐秋香, 刘相华. 金属学报, 2010; 46: 1215)
[22] Medina S F, Hernadez C A. Acta Mater, 1996; 44: 137
[23] Liu Z Y, Chen L S, Zhou M C, Liu X H, Wang G D. J Iron Steel Res, 2004; 16(1): 49 (刘战英, 陈连生, 周满春, 刘相华, 王国栋. 钢铁研究学报, 2004; 16(1): 49)
[24] Yu J W, Liu X F, Xie J X. Acta Metall Sin, 2011; 47: 486 (余均武, 刘雪峰, 谢建新. 金属学报, 2011; 47: 486)
[25] Yue C X, Zhang L W, Liao S L, Pei J B, Gao H J, Jia Y W, Lian X J. Mater Sci Eng, 2007; A499: 177
[26] Fernández A I, Uranga P, López B, Rodriguez-Ibabe J M. Mater Sci Eng, 2003; A361: 367
[1] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[2] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[3] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[4] 李金许,王伟,周耀,刘神光,付豪,王正,阚博. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458.
[5] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[6] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
[7] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[8] 江河,董建新,张麦仓,姚志浩,杨静. 服役条件下镍基高温合金应力松弛微观机制[J]. 金属学报, 2019, 55(9): 1211-1220.
[9] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[10] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.
[11] 陈占兴,丁宏升,陈瑞润,郭景杰,傅恒志. 脉冲电流作用下TiAl合金凝固组织演变及形成机理[J]. 金属学报, 2019, 55(5): 611-618.
[12] 邓亚辉,杨银辉,曹建春,钱昊. 23Cr-2.2Ni-6.3Mn-0.26NNi型双相不锈钢动态再结晶行为研究[J]. 金属学报, 2019, 55(4): 445-456.
[13] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.
[14] 马凯, 张星星, 王东, 王全兆, 刘振宇, 肖伯律, 马宗义. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55(10): 1329-1337.
[15] 肖伯律, 黄治冶, 马凯, 张星星, 马宗义. 非连续增强铝基复合材料的热变形行为研究进展[J]. 金属学报, 2019, 55(1): 59-72.