Please wait a minute...
金属学报  2018, Vol. 54 Issue (12): 1756-1766    DOI: 10.11900/0412.1961.2018.00222
  本期目录 | 过刊浏览 |
高锰TRIP钢冷轧以及α'-M逆转变过程的相变和织构演变
王丽娜1,2, 杨平1(), 李凯1, 崔凤娥1, 毛卫民1
1 北京科技大学材料科学与工程学院 北京 100083
2 北京科技大学天津学院材料系 天津 301830
Phase Transformation and Texture Evolution During Cold Rolling and α'-M Reversion in High Manganese TRIP Steel
Lina WANG1,2, Ping YANG1(), Kai LI1, Feng'e CUI1, Weimin MAO1
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Department of Materials, School of Tianjin, University of Science and Technology Beijing, Tianjin 301830, China
引用本文:

王丽娜, 杨平, 李凯, 崔凤娥, 毛卫民. 高锰TRIP钢冷轧以及α'-M逆转变过程的相变和织构演变[J]. 金属学报, 2018, 54(12): 1756-1766.
Lina WANG, Ping YANG, Kai LI, Feng'e CUI, Weimin MAO. Phase Transformation and Texture Evolution During Cold Rolling and α'-M Reversion in High Manganese TRIP Steel[J]. Acta Metall Sin, 2018, 54(12): 1756-1766.

全文: PDF(11916 KB)   HTML
摘要: 

对高锰相变诱发塑性(TRIP)钢冷轧过程的组织转变特征以及奥氏体(γ )和bcc结构马氏体(α'-M)的织构演变规律进行了研究,对形变诱发α'-M在高温时的逆转变行为进行了分析。结果表明,中等变形量下γ 已经大部分转变为α'-M,此时残余的γ 和hcp结构马氏体(ε -M)接近机械稳定化。变形量进一步增加时,主要发生α'-M的形变并形成平行于轧向(RD)的长条状组织。中等变形量下,α'-M主要具有{113}<110>、{554}<225>和旋转立方({001}<110>)等典型的相变织构。随变形量增加,α'-M的{113}<110>取向明显转向稳定取向{223}<110>,形成典型的冷轧织构(<110>∥RD)。在650~850 ℃退火时发生了α'-M的逆转变(α'-M→γ )及γ 的再结晶。α'-M的逆转变以扩散方式进行,存在Mn、Al元素在γα'-M中的再分配。α'-M的逆转变是通过γ 直接吞并临近的形变α'-M完成的,形成的γ 晶粒为长条状且存在较多的亚晶。逆转变形成的γ 与形变γ 的织构类型相同,这种织构遗传是由于残余γ 直接长大产生的。随退火时间延长,长条状γ 晶粒又通过亚晶合并的方式发生再结晶而被等轴γ 晶粒取代。

关键词 高锰TRIP钢冷轧α'-M逆转变;织构遗传    
Abstract

To meet the requirement of environment, economy and safety, advanced high strength steels including dual phased (DP), complex phased (CP), transformation-induced plasticity (TRIP) and twinning-induced plasticity (TWIP) steels are widely used for automotive steel. Among them, high manganese TWIP and TRIP steels are particularly appealing due to their outstanding tensile strength and elongation. In contrast to high manganese TWIP steel, high manganese TRIP steel exhibits higher strength and work hardening rate due to strain induced martensitic transformation. The enhanced mechanical properties of high manganese TRIP steel are determined by both the stability of the retained austenite (γ ) and the initial microstructure. Strain induced martensitic transformation and subsequent reversion from deformed martensite to γ during annealing is often applied as one of the most effective methods for microstructure improvement. Microstructure and texture characteristics of high manganese TRIP steel during cold rolling together with the reversion of deformed bcc martensite (α'-M) at high temperature were investigated. It is shown that the γ was almost completely transformed into α'-M at medium cold rolling reduction. And a higher reduction after α'-M saturation resulted in dominantly the deformation of α'-M, hence thin laths paralleled to the rolling direction (RD) were obtained. The main components in α'-M were {113}<110>, {554}<225> and rotated cube ({001}<110>) textures at medium cold rolling reduction, which are the typical phase transformation textures. The {113}<110> texture rotated toward a more stable orientation {223}<110> and led to a strong cold rolling texture (<110>//RD) with increasing reduction. The reversion of martensite and recrystallization of γ proceeded at temperature ranging from 650 ℃ to 850 ℃. The reversion of α'-M proceeded in a diffusional mechanism, accompanying with the redistribution of Mn and Al between γ and α'-M. Deformed α'-M was merged by the adjacent γ , and columnar γ grains with a large amount of subgrains were obtained. The texture of reverted γ was approximately the same as that of the deformed γ , this phenomenon called texture inheritance was formed by the direct growth of γ . Subsequently, recrystallization of γ grains occurred by sub-grain coalescence and the columnar γ grains were instead by equiaxed γ grains.

Key wordshigh manganese TRIP steel    cold rolling    α'-M reversion;    texture inheritance
收稿日期: 2018-05-22     
ZTFLH:  TG142.33  
基金资助:国家自然科学基金项目 Nos.51771024和51571024
作者简介:

作者简介 王丽娜,女,1982年生,博士生

图1  不同冷轧变形量下高锰相变诱发塑性(TRIP)钢的显微组织
图2  不同冷轧变形量下高锰TRIP钢的XRD谱
图3  不同冷轧变形量下高锰TRIP钢中γ、ε-M和α′-M的体积分数
图4  不同冷轧变形量下高锰TRIP钢的取向成像分析
图5  冷轧高锰TRIP钢中的γ和α’-M的取向分布函数(ODF)图
图6  90%冷轧高锰TRIP钢高温退火的组织演变和不同退火温度下γ相的体积分数
图7  90%冷轧高锰TRIP钢在850 ℃退火5 min后的SEM像和EDS结果
图8  90%冷轧高锰TRIP钢退火后形成的γ相的ODF图
图9  90%冷轧高锰TRIP钢在850 ℃退火30 s后的取向成像分析
图10  90%冷轧高锰TRIP钢850 ℃退火60 s和10 min的取向成像分析
图11  90%冷轧高锰TRIP钢在850 ℃退火过程中的组织转变示意图
[1] Frommeyer G, Brüx U, Neumann P.Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes[J]. ISIJ Int., 2003, 43: 438
[2] Gr?ssel O, Krüger L, Frommeyer G, et al.High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application[J]. Int. J. Plast., 2000, 16: 1391
[3] Bouaziz O, Allain S, Scott C P, et al.High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships[J]. Curr. Opin. Solid State Mater. Sci., 2011, 15: 141
[4] Allain S, Chateau J P, Bouaziz O, et al. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys [J]. Mater. Sci. Eng., 2004, A387-389: 158
[5] Vercammen S, Blanpain B, De Cooman B C, et al. Cold rolling behaviour of an austenitic Fe-30Mn-3Si-3Al TWIP-steel: The importance of deformation twinning[J]. Acta Mater., 2004, 52: 2005
[6] Gr?ssel O, Frommeyer G.Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels[J]. Mater. Sci. Technol., 1998, 14: 1213
[7] Sato K, Ichinose M, Hirotsu Y, et al.Effects of deformation induced phase transformation and twinning on the mechanical properties of austenitic Fe-Mn-Al alloys[J]. ISIJ Int., 1989, 29: 868
[8] Sun X R, Wang H Z, Yang P, et al.Mechanical behaviors and micro-shear structures of metals with different structures by high-speed compression[J]. Acta Metall. Sin., 2014, 50: 387(孙秀荣, 王会珍, 杨平等. 不同结构金属高速压缩力学行为及微观剪切结构差异[J]. 金属学报, 2014, 50: 387)
[9] Li J, Yang H Y, Yang P.Prolonged work hardening range in high manganese TRIP steel during adiabatic shear band formation[J]. Mater. Lett., 2014, 134: 180
[10] Murata Y, Ohashi S, Uematsu Y.Recent trends in the production and use of high strength stainless steels[J]. ISIJ Int., 1993, 33: 711
[11] Tomimura K, Takaki S, Tanimoto S, et al.Optimal chemical composition in Fe-Cr-Ni alloys for ultra grain refining by reversion from deformation induced martensite[J]. ISIJ Int., 1991, 31: 721
[12] Cayron C, Barcelo F, de Carlan Y. The mechanisms of the fcc-bcc martensitic transformation revealed by pole figures[J]. Acta Mater., 2010, 58: 1395
[13] Dash J, Otte H M.The martensite transformation in stainless steel[J]. Acta Metall., 1963, 11: 1169
[14] Nagy E, Mertinger V, Tranta F, et al.Deformation induced martensitic transformation in stainless steels[J]. Mater. Sci. Eng., 2004, A378: 308
[15] Ray R K, Jonas J J.Transformation textures in steels[J]. Int. Mater. Rev., 1990, 35: 1
[16] Tomota Y, Gong W, Harjo S, et al.Reverse austenite transformation behavior in a tempered martensite low-alloy steel studied using in situ neutron diffraction[J]. Scr. Mater., 2017, 133: 79
[17] Takaki S, Tomimur K, Ueda S.Effect of pre-cold-working on diffusional reversion of deformation induced martensite in metastable austenitic stainless steel[J]. ISIJ Int., 1994, 34: 522
[18] Ma Y Q, Jin J E, Lee Y K.A repetitive thermomechanical process to produce nano-crystalline in a metastable austenitic steel[J]. Scr. Mater., 2005, 52: 1311
[19] Hu B, Luo H W, Yang F, et al.Recent progress in medium-Mn steels made with new designing strategies, a review[J]. J. Mater. Sci. Technol., 2017, 33: 1457
[20] Zhang Y, Jing X T, Lou B Z, et al.Mechanism and reversible behavior of the α′→γ transformation in 1Cr18Ni9Ti stainless steel[J]. J. Mater. Sci., 1999, 34: 3291
[21] Tomimura K, Takaki S, Tokunaga Y.Reversion mechanism from deformation induced martensite to austenite in metastable austenitic stainless steels[J]. ISIJ Int., 1991, 31: 1431
[22] Johannsen D L, Kyr?l?inen A, Ferreira P J.Influence of annealing treatment on the formation of nano/submicron grain size AISI 301 austenitic stainless steels[J]. Metall. Mater. Trans., 2006, 37A: 2325
[23] Tomida T, Wakita M, Yasuyama M, et al.Memory effects of transformation textures in steel and its prediction by the double Kurdjumov-Sachs relation[J]. Acta Mater., 2013, 61: 2828
[24] Watanabe S, Kunitake T.The influence of reduction-ratio in the hot-rolling on the strength and toughness of quenched and tempered steel[J]. Tetsu Hagané, 1975, 61: 828(渡辺征一, 邦武立郎. 調質鋼の強度と靱性におよぼす熱間圧延時の圧下比の影響[J]. 鉄と鋼, 1975, 61: 828)
[25] Kimmins S T, Gooch D J.Austenite memory effect in 1Cr-1Mo-0.75V(Ti, B) steel[J]. Met. Sci., 1983, 17: 519
[26] Matsuda S, Okamura Y.Reverse transformation of low-carbon low alloy steels[J]. Tetsu Hagané, 1974, 60: 226(松田昭一, 岡村義弘. 低炭素低合金鋼の逆変態[J]. 鉄と鋼, 1974, 60: 226)
[27] Hara T, Maruyama N, Shinohara Y, et al.Abnormal α to γ transformation behavior of steels with a martensite and bainite microstructure at a slow reheating rate[J]. ISIJ Int., 2009, 49: 1792
[28] Zhang L W, Yang P, Wang J H, et al.Transformation of {100} texture induced by surface effect in ultra-low carbon electrical steel[J]. J. Mater. Sci., 2016, 51: 8087
[29] Zhang L W, Yang P, Mao W M.Opposite relationship between orientation selection and texture memory in the deformed electrical steel sheets during αγα transformation[J]. J. Mater. Sci. Technol., 2017, 33: 1522
[30] Lu F Y, Yang P, Meng L, et al.Behavior of martensite reverse transformation in 18Mn TRIP steel during warm deformation[J]. Acta Metall. Sin., 2010, 46: 1153(鲁法云, 杨平, 孟利等. 18Mn TRIP钢温变形过程中马氏体逆相变行为[J]. 金属学报, 2010, 46: 1153)
[31] Lü Y P, Hutchinson B, Molodov D A, et al.Effect of deformation and annealing on the formation and reversion of ε-martensite in an Fe-Mn-C alloy[J]. Acta Mater., 2010, 58: 3079
[1] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[2] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[3] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[4] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[5] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[6] 刘后龙,马明玉,刘玲玲,魏亮亮,陈礼清. 热轧板退火工艺对19Cr2Mo1W铁素体不锈钢织构与成形性能的影响[J]. 金属学报, 2019, 55(5): 566-574.
[7] 顾晨, 杨平, 毛卫民. 轧制工艺对低牌号无取向电工钢相变退火组织、织构与磁性能的影响[J]. 金属学报, 2019, 55(2): 181-190.
[8] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[9] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[10] 莫远科,张志豪,谢建新,潘洪江. 再结晶退火对高硅电工钢冷轧带材组织、有序结构和力学性能的影响*[J]. 金属学报, 2016, 52(11): 1363-1371.
[11] 付波,杨王玥,李龙飞,孙祖庆. C含量对冷轧C-Mn-Al-Si,系TRIP钢组织及力学性能的影响[J]. 金属学报, 2013, 29(4): 408-414.
[12] 张宁 杨平 毛卫民. 柱状晶对Fe-3%Si电工钢冷轧织构演变规律的影响[J]. 金属学报, 2012, 48(7): 782-788.
[13] 都祥元 苏国跃. 核电站控制棒驱动机构驱动杆用1Cr13厚壁管材成分选择与工艺优化[J]. 金属学报, 2011, 47(9): 1155-1158.
[14] 陈畅 汪明朴 王珊 贾延琳 左波 夏福中. Ta-7.5%W合金箔材冷轧过程中的位错结构演变[J]. 金属学报, 2011, 47(8): 984-989.
[15] 王东 马宗义. 固溶处理后冷轧变形7050铝合金时效工艺研究[J]. 金属学报, 2010, 46(5): 581-588.