Please wait a minute...
金属学报  2019, Vol. 55 Issue (12): 1561-1568    DOI: 10.11900/0412.1961.2019.00207
  研究论文 本期目录 | 过刊浏览 |
纳米晶化对锆基非晶合金动态压缩性能的影响
金辰日1,杨素媛1,2(),邓学元1,王扬卫1,2,程兴旺1,2
1. 北京理工大学材料学院 北京 100081
2. 北京理工大学冲击环境材料技术重点实验室 北京 100081
Effect of Nano-Crystallization on Dynamic Compressive Property of Zr-Based Amorphous Alloy
JIN Chenri1,YANG Suyuan1,2(),DENG Xueyuan1,WANG Yangwei1,2,CHENG Xingwang1,2
1. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
2. National Key Laboratory of Science and Technology on Materials under Shock and Impact, Beijing Institute of Technology, Beijing 100081, China
引用本文:

金辰日, 杨素媛, 邓学元, 王扬卫, 程兴旺. 纳米晶化对锆基非晶合金动态压缩性能的影响[J]. 金属学报, 2019, 55(12): 1561-1568.
JIN Chenri, YANG Suyuan, DENG Xueyuan, WANG Yangwei, CHENG Xingwang. Effect of Nano-Crystallization on Dynamic Compressive Property of Zr-Based Amorphous Alloy[J]. Acta Metall Sin, 2019, 55(12): 1561-1568.

全文: PDF(14714 KB)   HTML
摘要: 

以铸态Zr-Cu-Ni-Al-Nb非晶合金为材料,通过控制退火保温时间获得部分纳米晶化非晶合金,并采用DSC、XRD、HRTEM、SEM、准静态及动态压缩等手段,研究了纳米晶化对非晶合金在不同应变率下的抗压强度以及断裂机制的影响。结果表明,随着退火保温时间的增加,锆基非晶合金内部纳米级晶化相的体积分数及尺寸均增加。退火态非晶合金的抗压强度随着保温时间增加先增大后减小;应变率变化也会影响其抗压强度,从1×10-3 s-1增加到1×103 s-1时强度降低,继续增加到3×103 s-1时强度有所升高。不同程度的纳米晶化对非晶合金的断裂特征产生影响,随着晶化程度的增大,压缩试样的断口形貌从脉状花样向类准解理特征再向河流状花样转变。

关键词 非晶合金纳米晶化动态压缩断口形貌    
Abstract

Zr-based amorphous alloys are characterized by high glass forming ability, high thermal stability and excellent mechanical properties. The amorphous alloys in thermodynamic metastable state have the tendency to change to metastable state with lower energy or even crystal structure in equilibrium state under certain temperature or pressure conditions. At present, few researches have been conducted on the mechanical behavior of partially crystallized Zr-Cu-Ni-Al-Nb amorphous alloys, especially the fracture behavior under dynamic loading. In this work, as-cast Zr-Cu-Ni-Al-Nb amorphous alloy was annealed to accomplish different levels of nano-crystallization by controlling holding time. DSC, XRD, HRTEM, SEM, quasi-static and dynamic compression tests were utilized to research the effect of nano-crystallization on compressive strength and fracture mechanism of Zr-based amorphous alloy under different strain rates. The results indicated that the volume fraction and size of nanoscale crystalline phase inside Zr-based amorphous alloy increased with the increasing of annealing holding time. The compressive strength of annealed Zr-based amorphous alloy increased first and then decreased with the increase of holding time. The variation of strain rates also affected the compressive strength, which decreased when the strain rate increased from 1×10-3 s-1 to 1×103 s-1, and increased when the strain rate continually increased to 3×103 s-1. Different degrees of nano-crystallization had an impact on the fracture characteristics of Zr-based amorphous alloy. As the degree of crystallization increased, the fracture morphology of compression samples changed from vein-like patterns to quasi-cleavage features and then to river patterns.

Key wordsamorphous alloy    nano-crystallization    dynamic compression    fracture morphology
收稿日期: 2019-06-25     
ZTFLH:  TG146.2  
基金资助:国家部委项目(No.2017-ZD-022)
作者简介: 金辰日,男,1994年生,硕士生
图1  不同温度等温DSC曲线和退火保温时间的选取
图2  铸态和退火态锆基非晶合金的升温DSC曲线
Holding time / minΔH / (J·g-1)χ / %
20-53.216
40-41.335
60-33.248
80-28.555
表1  退火态锆基非晶合金的晶化放热焓和晶化相体积分数
图3  铸态和退火态锆基非晶合金XRD谱
图4  铸态和退火态锆基非晶合金的HRTEM像和SAED谱
图5  铸态和退火态锆基非晶合金的准静态及动态压缩真应力-真应变曲线
图6  不同应变率下抗压强度与晶化相体积分数的关系
图7  压缩实验后回收试样的宏观照片
图8  退火态锆基非晶合金压缩断口形貌
[1] Luborsky F E. Amorphous Metallic Alloys [M]. London: Butterworth, 1983: 1
[2] Johnson W L. Bulk glass-forming metallic alloys: Science and technology [J]. MRS Bull., 1999, 24(10): 42
[3] Wang W H, Dong C, Shek C H. Bulk metallic glasses [J]. Mater. Sci. Eng., 2004, R44: 45
[4] Ashby M F, Greer A L. Metallic glasses as structural materials [J]. Scr. Mater., 2006, 54: 321
[5] Huang Y J, Chiu Y L, Shen J, et al. Mechanical performance of metallic glasses during nanoscratch tests [J]. Intermetallics, 2010, 18: 1056
[6] Peker A, Johnson W L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10Be22.5 [J]. Appl. Phys. Lett., 1993, 63: 2342
[7] Inoue A, Zhang T, Masumoto T. Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region [J]. Mater. Trans., 1990, 31: 177
[8] Inoue A, Zhang T, Nishiyama N, et al. Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy [J]. Mater. Trans., 1993, 34: 1234
[9] Jiang Q K, Wang X D, Nie X P, et al. Zr-(Cu, Ag)-Al bulk metallic glasses [J]. Acta Mater., 2008, 56: 1785
[10] Zhang Y, Zhao D Q, Pan M X, et al. Glass forming properties of Zr-based bulk metallic alloys [J]. J. Non-Cryst. Solids, 2003, 315: 206
[11] Lin X H, Johnson W L, Rhim W K. Effect of oxygen impurity on crystallization of an undercooled bulk glass forming Zr-Ti-Cu-Ni-Al alloy [J]. Mater. Trans., 1997, 38: 473
[12] Cao H B, Ma D, Hsieh K C, et al. Computational thermodynamics to identify Zr-Ti-Ni-Cu-Al alloys with high glass-forming ability [J]. Acta Mater., 2006, 54: 2975
[13] Deng S T, Zhang H F, Wang A M, et al. Improving glass forming ability of Zr50.5Cu36.5Ni4Al9 alloy by suppressing CuZr phase precipitation [J]. J. Alloys Compd., 2008, 460: 182
[14] Wu W F, Yao K F. The progress in research of nano-crystallization of amorphous alloys [J]. Rare Met. Mater. Eng., 2005, 34: 505
[14] (吴文飞, 姚可夫. 非晶合金纳米晶化的研究进展 [J]. 稀有金属材料与工程, 2005, 34: 505)
[15] Inoue A, Zhang T, Kim Y H. Synthesis of high strength bulk amorphous Zr-Al-Ni-Cu-Ag alloys with a nanoscale secondary phase [J]. Mater. Trans., 1997, 38: 749
[16] Bian Z, He G, Chen G L. Mechanical properties of Zr52.5Cu17.9-Ni14.6Al10Ti5 bulk amorphous alloys after annealing isothermally [J]. Acta Metall. Sin., 2000, 36: 693
[16] (边 赞, 何 国, 陈国良. Zr52.5Cu17.9Ni14.6Al10Ti5块体非晶退火后的力学性能 [J]. 金属学报, 2000, 36: 693)
[17] Zheng W. Dynamic mechanical behaviors of ZrCuNiAl bulk glass-forming alloy system [D]. Harbin: Harbin Institute of Technology, 2011
[17] (郑 伟. ZrCuNiAl系块体非晶合金的动态力学行为 [D]. 哈尔滨: 哈尔滨工业大学, 2011)
[18] Peng P, Zheng C X, Hu Y J, et al. Measurement and control of the crystallinity of amorphous alloy during crystallization by DSC [J]. J. Hunan Univ. (Nat. Sci.), 2003, 30(3): 40
[18] (彭 平, 郑采星, 胡艳军, 等. 非晶合金晶化过程中结晶度的DSC法测定与控制(I) [J]. 湖南大学学报(自然科学版), 2003, 30(3: 40)
[19] Wang G, Shen J, Qin Q H, et al. Investigation of deformation behavior of Zr-Ti-Ni-Cu-Be bulk metallic glass containing nanocrystals [J]. J. Mater. Sci., 2005, 40: 4561
[20] Fan C, Inoue A. Ductility of bulk nanocrystalline composites and metallic glasses at room temperature [J]. Appl. Phys. Lett., 2000, 77: 46
[21] Fan C, Li C F, Inoue A, et al. Deformation behavior of Zr-based bulk nanocrystalline amorphous alloys [J]. Phys. Rev., 2000, 61B: R3761
[22] Fan C, Louzguine D V, Li C F, et al. Nanocrystalline composites with high strength obtained in Zr-Ti-Ni-Cu-Al bulk amorphous alloys [J]. Appl. Phys. Lett., 1999, 75: 340
[23] Liu C T, Heatherly L, Horton J A, et al. Test environments and mechanical properties of Zr-base bulk amorphous alloys [J]. Metall. Mater. Trans., 1998, 29A: 1811
[24] Jiang W H, Liao H H, Liu F X, et al. Rate-dependent temperature increases in shear bands of a bulk-metallic glass [J]. Metall. Mater. Trans., 2008, 39A: 1822
[25] Liu J, Wang L, Cheng H W, et al. Fracture behavior of Zr-based bulk amorphous alloy under high-speed impact [J]. Trans. Beijing Inst. Technol., 2012, 32: 198
[25] (刘 俊, 王 鲁, 程焕武等. 高速冲击载荷下块体Zr基非晶合金断裂行为研究 [J]. 北京理工大学学报, 2012, 32: 198)
[1] 刘帅帅, 侯超楠, 王恩刚, 贾鹏. Zr61Cu25Al12Ti2Zr52.5Cu17.9Ni14.6Al10Ti5 块体非晶合金过冷液相区的塑性流变行为[J]. 金属学报, 2022, 58(6): 807-815.
[2] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[3] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[4] 张金勇, 赵聪聪, 吴宜谨, 陈长玖, 陈正, 沈宝龙. (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为[J]. 金属学报, 2022, 58(2): 215-224.
[5] 韩录会, 柯海波, 张培, 桑革, 黄火根. 非晶态U60Fe27.5Al12.5 合金的晶化动力学行为[J]. 金属学报, 2022, 58(10): 1316-1324.
[6] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[7] 胡祥, 葛嘉城, 刘思楠, 伏澍, 吴桢舵, 冯涛, 刘冬, 王循理, 兰司. 具有异常放热现象的Fe-Nb-B-Y非晶合金燃烧机理[J]. 金属学报, 2021, 57(4): 542-552.
[8] 刘日平, 马明臻, 张新宇. 块体非晶合金铸造成形的研究新进展[J]. 金属学报, 2021, 57(4): 515-528.
[9] 毕甲紫, 刘晓斌, 李然, 张涛. 非晶合金粉末作为润滑油添加剂的摩擦学性能[J]. 金属学报, 2021, 57(4): 559-566.
[10] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[11] 朱敏, 欧阳柳章. 镁基储氢合金动力学调控及电化学性能[J]. 金属学报, 2021, 57(11): 1416-1428.
[12] 黄火根, 张鹏国, 张培, 王勤国. U-CoU-Fe基础体系非晶形成能力的比较[J]. 金属学报, 2020, 56(6): 849-854.
[13] 耿遥祥, 王英敏. 铁基非晶合金局域结构与性能关联:基于微合金化机理研究[J]. 金属学报, 2020, 56(11): 1558-1568.
[14] 徐秀月, 李艳辉, 张伟. Fe(Pt, Ru)B非晶带材脱合金制备纳米多孔PtRuFe及其甲醇电催化性能[J]. 金属学报, 2020, 56(10): 1393-1400.
[15] 杨高林, 林鑫, 卢献钢. 激光多次熔凝Zr55Cu30Al10Ni5非晶合金的晶化形态与演化机理[J]. 金属学报, 2019, 55(12): 1544-1550.