Please wait a minute...
金属学报  2019, Vol. 55 Issue (11): 1407-1416    DOI: 10.11900/0412.1961.2019.00022
  研究论文 本期目录 | 过刊浏览 |
丝材+电弧增材制造钛/铝异种金属反应层的研究
田银宝,申俊琦(),胡绳荪,勾健
天津大学材料科学与工程学院天津市现代连接技术重点实验室 天津 300354
Study of the Reaction Layer of Ti and Al Dissimilar Alloys by Wire and Arc Additive Manufacturing
TIAN Yinbao,SHEN Junqi (),HU Shengsun,GOU Jian
Tianjin Key Laboratory of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
引用本文:

田银宝, 申俊琦, 胡绳荪, 勾健. 丝材+电弧增材制造钛/铝异种金属反应层的研究[J]. 金属学报, 2019, 55(11): 1407-1416.
TIAN Yinbao, SHEN Junqi, HU Shengsun, GOU Jian. Study of the Reaction Layer of Ti and Al Dissimilar Alloys by Wire and Arc Additive Manufacturing[J]. Acta Metall Sin, 2019, 55(11): 1407-1416.

全文: PDF(15682 KB)   HTML
摘要: 

分别利用直流冷金属过渡(CMT)和变极性CMT脉冲复合技术进行TC4和ER2319焊丝的堆积,实现钛/铝异种金属丝材+电弧增材制造,通过高速摄像及电信号采集系统进行电弧形态、熔滴过渡以及电流/电压信号的采集分析;利用OM、SEM、TEM、EDS、硬度实验以及拉伸实验等方法对钛/铝异种金属构件的微观组织与力学性能进行分析。结果表明,变极性CMT脉冲复合堆积铝合金过程包括正极性脉冲阶段和负极性CMT阶段。在正极性脉冲阶段,电弧集中且热输入较大;在变极性CMT阶段,热输入较小且对构件具有明显的冷却效果。钛/铝异种金属构件的反应层包括过渡层和界面层,TiAl3界面层的厚度约为10 μm。在界面层存在微裂纹;反应层的硬度介于钛合金和铝合金之间;钛/铝异种金属构件的平均抗拉强度为65 MPa,所有拉伸试样均在界面层断裂,断裂方式均具有脆性断裂的特征。

关键词 钛合金铝合金变极性冷金属过渡脉冲复合增材制造    
Abstract

The wire and arc additive manufactured Ti/Al dissimilar alloys can be used in the aerospace and automobile industries. For some parts, Ti alloy was replaced by Al alloy, which reduced the weight and cost. The additive manufactured Ti/Al dissimilar alloys had the advantages of two materials and remedied the each other's shortcomings. In this study, TC4 and ER2319 wires were deposited by direct current cold metal transfer (CMT) and variable polarity-CMT+pulse mode, respectively, to realize the wire and arc additive manufacturing for Ti/Al dissimilar alloys. The arc shape, droplet transfer, voltage and current were captured by high speed camera and electrical signal acquisition system. Microstructure and mechanical properties of Ti/Al component were analyzed by OM, SEM, TEM, EDS, hardness test and tensile test. The results showed that the variable polarity-CMT+pulse welding process included the positive pulse periods and negative CMT periods. During the positive pulse periods, the arc concentrated at the end of welding wire. During the negative CMT periods, the heat input was low, which had a cooling effect on component. The reaction layer in the component included the interface layer and transition layer. The thickness of TiAl3 interfacial layer was 10 μm. The hardness of reaction layer was between that of Ti and Al alloys. The crack was formed in the interface layer. The average tensile strength was approximately 65 MPa. All samples fractured in the interface layer. The fracture mode was brittle fracture.

Key wordsTi alloy    Al alloy    variable polarity cold metal transfer plus pulse    additive manufacturing
收稿日期: 2019-01-25     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目No(51575381);天津市应用基础及前沿技术研究计划项目No(15JCZDJC38600)
作者简介: 田银宝,男,1988年生,博士生
MaterialAlTiCuSiMgMnFeZnVCNHO
TC46.1Bal.----0.3-40.10.010.0150.1
ER2319Bal.0.1~0.25.8~6.80.20.020.2~0.40.30.10.1----
表1  基板与焊丝名义化学成分 (mass fraction / %)
图1  试样截取位置
图2  第一层铝合金堆积过程的电流与电压波形图
图3  第一层铝合金熔滴过渡过程
图4  丝材+电弧增材制造(WAAM)构件微观组织

Position

Atomic fraction of element / %

Possible phase

TiAlCuV
Point 1 in Fig.4b21.2077.99-0.81TiAl3
Point 2 in Fig.4c24.2374.23-1.54TiAl3
Point 3 in Fig.4d85.2111.50-3.29Ti
Point 4 in Fig.5a20.9077.79-1.31TiAl3
Point 5 in Fig.5a-71.9728.03-Al2Cu
Point 6 in Fig.9b22.3076.73-0.97TiAl3
表2  WAAM构件不同位置的EDS分析结果
图5  图4a中II区微观组织的高倍SEM像及相应的元素分布
图6  图4a中II区的TEM分析
图7  钛/铝反应层形成示意图
图8  WAAM构件反应层中裂纹形貌的SEM像
图9  拉伸试样断口形貌的SEM像
图10  WAAM构件界面层附近的硬度分布
[1] LiN, HuangS, ZhangG D, et al. Progress in additive manufacturing on new materials: A review [J]. J. Mater. Sci. Technol., 2019, 35: 242
[2] YuJ, WangJ J, NiD R, et al. Microstructure and mechanical properties of additive manufactured 2319 alloy by electron beam freeform fabrication [J]. Acta Metall. Sin., 2018, 54: 1725
[2] 于 菁, 王继杰, 倪丁瑞等. 电子束熔丝沉积快速成形2319铝合金的微观组织与力学性能 [J]. 金属学报, 2018, 54: 1725
[3] ZuoH S, LiH J, QiL H, et al. Influence of interfacial bonding between metal droplets on tensile properties of 7075 aluminum billets by additive manufacturing technique [J]. J. Mater. Sci. Technol., 2016, 32: 485
[4] XiongJ, LiR, LeiY Y, et al. Heat propagation of circular thin-walled parts fabricated in additive manufacturing using gas metal arc welding [J]. J. Mater. Process. Technol., 2018, 251: 12
[5] HorgarA, FostervollH, Nyhus, B, et al. Additive manufacturing using WAAM with AA5183 wire [J]. J. Mater. Process. Technol., 2018, 259: 68
[6] HadenC V, ZengG, CarterIII F M, et al. Wire and arc additive manufactured steel: Tensile and wear properties [J]. Addit. Manuf., 2017, 16: 115
[7] WuB T, DingD H, PanZ X, et al. Effects of heat accumulation on the arc characteristics and metal transfer behavior in wire arc additive manufacturing of Ti6Al4V [J]. J. Mater. Process. Technol., 2017, 250: 304
[8] ZhangE L, WangX Y, HanY. Research status of biomedical porous Ti and its alloy in China [J]. Acta Metall. Sin., 2017, 53: 1555
[8] 张二林, 王晓燕, 憨 勇. 医用多孔Ti及钛合金的国内研究现状 [J]. 金属学报, 2017, 53: 1555
[9] JinP, SuiR, LiF X, et al. Reactive wetting of TC4 titanium alloy by molten 6061 Al and 4043 Al alloys [J]. Acta Metall. Sin., 2017, 53: 479
[9] 靳 鹏, 隋 然, 李富祥等. 熔融6061/4043铝合金在TC4钛合金表面的反应润湿 [J]. 金属学报, 2017, 53: 479
[10] QiZ W, CongB Q, QiB J, et al. Microstructure and mechanical properties of double-wire+arc additively manufactured Al-Cu-Mg alloys [J]. J. Mater. Process. Technol., 2018, 255: 347
[11] WangY, WangJ. Microstructure and mechanical properties of TIG welded-brazed joint of dissimilar Al/Ti alloy [J]. Heat Treat. Met., 2017, 42(2): 44
[11] 王 勇, 王 敬. Al/Ti异种金属TIG熔钎焊接头的显微组织及力学性能 [J]. 金属热处理, 2017, 42(2): 44
[12] LiJ Z, SunQ J, LiuY B, et al. Cold metal transfer welding-brazing of pure titanium TA2 to aluminum alloy 6061-T6 [J]. Adv. Eng. Mater., 2017, 19: 1600494
[13] FengJ C, ZhangH T, HeP. The CMT short-circuiting metal transfer process and its use in thin aluminium sheets welding [J]. Mater. Des., 2009, 30: 1850
[14] ChenS J, WangX, YuanT, et al. Research on prediction method of liquation cracking susceptibility to magnesium alloy welds [J]. Acta Metall. Sin., 2018, 54: 1735
[14] 陈树君, 王 宣, 袁 涛等. 镁合金焊缝液化裂纹敏感性及预测方法探究 [J]. 金属学报, 2018, 54: 1735
[15] TianY B, ShenJ Q, HuS S, et al. Effects of ultrasonic peening treatment on surface quality of CMT-welds of Al alloys [J]. J. Mater. Process. Technol., 2018, 254: 193
[16] XieC J, YangS L, LiuH B, et al. Microstructure and mechanical properties of robot cold metal transfer Al5.5Zn2.5Mg2.2Cu aluminium alloy joints [J]. J. Mater. Process. Technol., 2018, 255: 507
[17] CongB Q, OuyangR J, QiB J, et al. Influence of cold metal transfer process and its heat input on weld bead geometry and porosity of aluminum-copper alloy welds [J]. Rare Met. Mater. Eng., 2016, 45: 606
[18] TianY B, ShenJ Q, HuS S, et al. Effects of ultrasonic vibration in the CMT process on welded joints of Al alloy [J]. J. Mater. Process. Technol., 2018, 259: 282
[19] PangJ, HuS S, ShenJ Q, et al. Arc characteristics and metal transfer behavior of CMT+P welding process [J]. J. Mater. Process. Technol., 2016, 238: 212
[20] ChenM A, ZhangD, WuC S. Current waveform effects on CMT welding of mild steel [J]. J. Mater. Process. Technol., 2017, 243: 395
[21] PickinC G, YoungK. Evaluation of cold metal transfer (CMT) process for welding aluminium alloy [J]. Sci. Technol. Weld. Joining, 2006, 11: 583
[22] GungorB, KalucE, TabanE, et al. Mechanical and microstructural properties of robotic cold metal transfer (CMT) welded 5083-H111 and 6082-T651 aluminum alloys [J]. Mater. Des., 2014, 54: 207
[23] CaoR, YuG, ChenJ H, et al. Cold metal transfer joining aluminum alloys-to-galvanized mild steel [J]. J. Mater. Process. Technol., 2013, 213: 1753
[24] SunQ J, LiJ Z, LiuY B, et al. Microstructural characterization and mechanical properties of Al/Ti joint welded by CMT method-assisted hybrid magnetic field [J]. Mater. Des., 2017, 116: 316
[25] JiH, DengY L, XuH Y, et al. The influence of welding line energy on the microstructure and property of CMT overlap joint of 5182-O and HC260YD+Z [J]. Acta Metall. Sin., 2019, 55: 376
[25] 吉 华, 邓运来, 徐红勇等. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响 [J]. 金属学报, 2019, 55: 376
[26] ZhangC, LiY F, GaoM, et al. Wire arc additive manufacturing of Al-6Mg alloy using variable polarity cold metal transfer arc as power source [J]. Mater. Sci. Eng., 2018, A711: 415
[27] GuJ L, DingJ L, WilliamsS W, et al. The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys [J]. J. Mater. Process. Technol., 2016, 230: 26
[28] GuJ L, DingJ L, WilliamsS W, et al. The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3Cu alloy [J]. Mater. Sci. Eng., 2016, A651: 18
[29] OnuikeB, BandyopadhyayA. Additive manufacturing of Inconel 718-Ti6Al4V bimetallic structures [J]. Addit. Manuf., 2018, 22: 844
[30] HinojosA, MirelesJ, ReichardtA, et al. Joining of Inconel 718 and 316 stainless steel using electron beam melting additive manufacturing technology [J]. Mater. Des., 2016, 94: 17
[31] CuiQ L. Microstructure and mechanical properties of TIG weldedbrazed joint of pre-coating titanium and aluminum alloy [J]. Trans. China Weld. Inst., 2016, 37(10): 125
[31] 崔庆龙. 预镀层钛合金与铝合金电弧熔钎焊接头界面组织及力学性能分析 [J]. 焊接学报, 2016, 37(10): 125
[32] WangP. Study on CMT welding process of Mg/Al dissimilar metals based on the control of energy input process [D]. Tianjin: Tianjin University, 2017
[32] 王 鹏. 基于CMT焊接能量输入过程控制的镁/铝异种金属焊接研究 [D]. 天津: 天津大学, 2017
[33] LüS X, YangT, HuangY X, et al. Interface characteristics and facture behavior of TIG arc welding-brazed Ti/Al dissimilar alloys [J]. Rare Met. Mater. Eng., 2013, 42: 478
[33] 吕世雄, 杨 涛, 黄永宪等. Ti/Al TIG微熔钎焊界面行为及接头断裂行为 [J]. 稀有金属材料与工程, 2013, 42: 478
[34] WeiS Z, LiY J. Welding defects and improving technologies during fusion welding of Ti/Al dissimilar lightweight alloys [J]. Weld. Technol., 2014, 43(4): 59
[34] 魏守征, 李亚江. 钛/铝异种轻金属熔焊缺陷及解决工艺 [J]. 焊接技术, 2014, 43(4): 59
[35] SomashekaraM A, NaveenkumarM, KumarA, et al. Investigations into effect of weld-deposition pattern on residual stress evolution for metallic additive manufacturing [J]. Int. J. Adv. Manuf. Technol., 2017, 90: 2009
[36] WeiS Z, LiY J, WangJ, et al. Effect of pulsed current on interfacial microstructure during welding-brazing of Ti/Al dissimilar alloys [J]. Trans. China Weld. Inst., 2015, 36(10): 49
[36] 魏守征, 李亚江, 王 娟等. 脉冲电流对钛/铝异种金属熔钎焊界面特征的影响 [J]. 焊接学报, 2015, 36(10): 49
[37] MaZ P, YuX L, MengQ W. Microstructure and fracture behavior of arc welding-brazing joints between titanium and aluminum dissimilar alloys [J]. Chin. J. Nonferrous Met., 2015, 25: 3067
[37] 马志鹏, 于心泷, 孟庆武. 钛/铝异种合金电弧熔钎焊接接头的组织与断裂行为 [J]. 中国有色金属学报, 2015, 25: 3067
[1] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[3] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[4] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[5] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[6] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[7] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[8] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[9] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[10] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[11] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[12] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[13] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[14] 张百成, 张文龙, 曲选辉. 基于高通量制备的增材制造材料成分设计[J]. 金属学报, 2023, 59(1): 75-86.
[15] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.