Please wait a minute...
金属学报  2019, Vol. 55 Issue (7): 849-858    DOI: 10.11900/0412.1961.2018.00481
  本期目录 | 过刊浏览 |
地质处置低氧过渡期X65低碳钢腐蚀行为研究
刘灿帅1,2,田朝晖2,张志明1,王俭秋1(),韩恩厚1
1. 中国科学院金属研究所中国科学院核用材料与安全评价重点实验室 沈阳 110016
2. 苏州热工研究院有限公司 苏州 215008
Corrosion Behaivour of X65 Low Carbon Steel During Redox State Transition Process of High LevelNuclear Waste Disposal
Canshuai LIU1,2,Zhaohui TIAN2,Zhiming ZHANG1,Jianqiu WANG1(),En-Hou HAN1
1. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. Suzhou Nuclear Power Research Institute Co. , Ltd. , Suzhou 215008, China
全文: PDF(20380 KB)   HTML
摘要: 

利用实验室自行搭建的低氧手套箱电化学测试体系系统,长期监测X65低碳钢在模拟地质处置过渡期80 ℃低氧饱和膨润土中的电化学腐蚀行为,发现X65低碳钢的开路电位在150 d内逐渐降低,阻抗模逐渐增加,腐蚀类型从初期的点蚀转变为均匀腐蚀;利用SEM、EDS和μ?XRD表征了X65低碳钢腐蚀产物的形貌、元素组成和物相组成,发现腐蚀产物有颗粒状、片状、杆状和胞状4种类型,腐蚀产物中的元素均匀分布,产物物相由Fe3O4α-Fe2O3组成;使用失重法测量X65低碳钢平均腐蚀速率,发现腐蚀速率(V)在150 d内逐渐从195.88 μm/a降低到20.58 μm/a,V随时间(t)的变化规律符合降幂函数关系式V=8.34t-0.88,腐蚀过程受扩散控制。

关键词 地质处置低碳钢腐蚀电化学扩散    
Abstract

Domestic and foreign researches on the corrosion behavior of low carbon steel canister in high level nuclear waste geological repositories focus on the initial aerobic stage and the later anaerobic stage, while few researches have been reported on the corrosion behavior during the disposal transition period. The long term electrochemical corrosion behavior of X65 low carbon steel in 80 ℃ Gaomiaozi bentonite saturated with anaerobic Beishan groundwater has been studied by electrochemical measurement system in anaerobic glovebox constructed independently. The results indicated that the open circuit potential of X65 low carbon steel decreased gradually during 150 d, while the electrochemical impedance of the corrosion film increased with immersion time. Pitting corrosion occurred at the beginning of immersion tests, and finally transformed into general corrosion. Morphologies, compositions, and phases of the corrosion film formed on the carbon steel surface were examined by SEM, EDS and μ?XRD. The results showed that the corrosion film was mainly composed of blocks, slices, rods and swellings. The elemental distribution in the corrosion film was uniform, and the phases were composed of magnetite and hematite. The average corrosion rates were detected by weight loss measurement, which decreased from 195.88 μm/a to 20.58 μm/a. The corrosion rates (V) followed a power function pattern V=8.34t-0.88, indicating that the film growth process was controlled by oxygen diffusion.

Key wordsgeological dispodal    low carbon steel    corrosion    electrochemical    disffusion
收稿日期: 2018-10-22     
ZTFLH:  TF777.1  
基金资助:中国科学院前沿科学重点研究计划项目(No.QYZDY-SSWJSC012);中国科学院重点资助项目(No.ZDRW-CN-2017-1)
通讯作者: 王俭秋     E-mail: wangjianqiu@imr.ac.cn
Corresponding author: Jianqiu WANG     E-mail: wangjianqiu@imr.ac.cn
作者简介: 刘灿帅,男,1990年生,博士

引用本文:

刘灿帅,田朝晖,张志明,王俭秋,韩恩厚. 地质处置低氧过渡期X65低碳钢腐蚀行为研究[J]. 金属学报, 2019, 55(7): 849-858.
Canshuai LIU, Zhaohui TIAN, Zhiming ZHANG, Jianqiu WANG, En-Hou HAN. Corrosion Behaivour of X65 Low Carbon Steel During Redox State Transition Process of High LevelNuclear Waste Disposal. Acta Metall Sin, 2019, 55(7): 849-858.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2018.00481      或      https://www.ams.org.cn/CN/Y2019/V55/I7/849

图1  高放废物地质处置环境演变
图2  片状浸泡样品的取样位置
图3  双电极体系电解池示意图
图4  X65低碳钢在80 ℃低氧饱和膨润土中开路电位(OCP)随时间变化规律及80 ℃时Fe-H2O系E-pH图
图5  X65低碳钢在80 ℃ 低氧饱和膨润土中腐蚀产物微区X射线衍射分析
图6  X65低碳钢在80 ℃低氧饱和膨润土中浸泡不同时间后的EIS
图7  X65低碳钢在80 ℃低氧饱和膨润土中EIS等效电路与物理模型

Time

d

Rs

Ω·cm2

Ydl

10-4·Ω-1·cm-2·s-n

ndl

Rct

Ω·cm2

L

H·cm2

RL

Ω·cm2

1344.090.81685112703863
5384.760.82872189507468
10497.710.79139236903644
20505.370.78143530942631
40706.240.78148025241568
表1  X65低碳钢在80 ℃低氧饱和膨润土中腐蚀1~40 d EIS的拟合结果
图8  X65低碳钢在80 ℃低氧饱和膨润土中腐蚀不同时间后的表面形貌
图9  X65低碳钢在80 ℃低氧饱和膨润土中腐蚀不同时间后的截面形貌

Time

d

Rs

Ω·cm2

Ydl

10-4·Ω-1·cm-2·s-n

ndl

Rct

Ω·cm2

Yf

10-4·Ω-1·cm-2·s-n

nf

Rf

Ω·cm2

W

60856.940.7815067.650.79103612.82
80883.890.7915827.400.7514619.54
100905.520.8016927.090.7718784.62
1201114.280.7717087.010.7530763.56
1501475.490.7918306.960.7633742.87
表2  X65低碳钢在80 ℃低氧饱和膨润土中腐蚀60~150 d EIS的拟合结果
图10  X65低碳钢在80 ℃低氧饱和膨润土中浸泡150 d后的腐蚀产物典型微观形貌
SpeciesOFeNaMgAlSiSClCaMn
Block42.1454.690.460.550.580.320.220.140.250.65
Slice56.0539.470.511.180.910.640.230.130.500.38
Rod56.6540.070.340.831.060.210.150.060.300.33
Swelling55.0639.711.450.780.530.660.260.230.380.94
表3  X65低碳钢在80 ℃低氧饱和膨润土中腐蚀产物的平均元素组成
图11  X65低碳钢在80 ℃低氧饱和膨润土中浸泡150 d后腐蚀产物截面区域(图9d中方框区域)的元素分布
图12  X65低碳钢在80 ℃低氧饱和膨润土中的平均腐蚀速率随时间变化的拟合结果
[1] Wang J. Geological disposal of high level radioactive waste in China: Review and prospect [J]. Uranium Geol., 2009, 25: 71
[1] (王 驹. 高放废物深地质处置: 回顾与展望 [J]. 铀矿地质, 2009, 25: 71)
[2] Wang J. Geological disposal of high level radio active waste: Progress and challenges [J]. Eng. Sci., 2008, 10(3): 58
[2] (王 驹. 高放废物地质处置: 进展与挑战 [J]. 中国工程科学, 2008, 10(3): 58)
[3] SKB. Integrated account of method, site selection and programme prior to the site investigation phase [R]. Stockholm: Swedish Nuclear Fuel and Waste Management Co., 2001
[4] Wang J. Geological Disposal of High Level Radioactive Waste in China in the New Century [M]. Beijing: China Atomic Energy Press, 2016: 127
[4] (王 驹. 新世纪中国高放废物地质处置 [M]. 北京: 中国原子能出版社, 2016: 127)
[5] McMurry J, Ikeda B M, Stroes-Gascoyne S, et al. Evolution of a canadian deep geologic repository: Base scenario [R]. Toronto, Ontario, Canada: Atomic Energy of Canada Limited, 2003
[6] King F, Shoesmith D W. Nuclear waste canister materials: Corrosion behaviour and long-term performance in geological repository systems [A]. Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste [M]. Cambridge: Woodhead Publishing Limited, 2010: 365
[7] Zhang Y J. Numerical analysis for coupled thermo-hydro-mechanical processes in engineered barrier of conceptual nuclear waste repository [J]. Eng. Mech., 2007, 24(5): 186
[7] (张玉军. 核废料处置概念库工程屏障中热-水-应力耦合过程数值分析 [J]. 工程力学, 2007, 24(5): 186)
[8] Honda A, Teshima T, Tsurudome K, et al. Effect of compacted bentonite on the corrosion behavior of carbon steel as geological isolation overpack material [J]. MRS Proceedings, 1990, 212: 287
[9] Xia X, Idemitsu K, Arima T, et al. Corrosion of carbon steel in compacted bentonite and its effect on neptunium diffusion under reducing condition [J]. Appl. Clay Sci., 2005, 28: 89
[10] Kozaki T, Imamura Y, Takada J, et al. Corrosion of iron and migration of corrosion products in compacted bentonite [J]. MRS Proceedings, 1994, 353: 329
[11] Westerman R E, Nelson J L, Pitman S G, et al. Evaluation of iron-base materials for waste package containers in a salt repository [J]. MRS Proc., 2011, 26: 427
[12] Ahn T M, Soo P. Corrosion of low-carbon cast steel in concentrated synthetic groundwater at 80 to 150 ℃ [J]. Waste Manag., 1995, 15: 471
[13] McCright R D, Weiss H. Corrosion behavior of carbon steels under tuff repository environmental conditions [J]. MRS Proceedings, 1984, 44: 287
[14] Smailos E, Fiehn B, Gago J A, et al. Corrosion studies on selected metallic materials for application in nuclear waste disposal containers [R]. Karlsruhe: Institut für Nukleare Entsorgung, 1994
[15] Smailos E, Schwarzkopf W, Kienzler B, et al. Corrosion of carbon-steel containers for heat-generating nuclear waste in brine environments relevant for a rock-salt repository [J]. MRS Proceedings, 1991, 257: 399
[16] Smailos E, Schwarzkopf W, Koester R, et al. Corrosion testing of selected packaging materials for disposal of high-level waste glass in rock and salt formations [R]. Karlsruhe: Institut für Nukleare Entsorgung, 1990
[17] Smailos E. Corrosion investigations of selected container materials for HLW disposal in rock salt formations [R]. Karlsruhe: Kernforschungszentrum Karlsruhe GmbH, 1985
[18] Smart N R, Blackwood D J, Werme L. Anaerobic corrosion of carbon steel and cast iron in artificial groundwaters: Part 2—Gas generation [J]. Corrosion, 2002, 58: 627
[19] Johnson L H, King F. Canister options for the disposal of spent fuel [R]. Wettingen: National Cooperative for the Disposal of Radioactive Waste, 2003
[20] King F. Overview of a carbon steel container corrosion model for a deep geological repository in sedimentary rock [R]. Toronto: Nuclear Waste Management Organization, 2007
[21] Zheng M, Huang Y L, Xifang D, et al. Corrosion behavior of Q235 steel in simulated underground water and highly compacted bentonite environment of Beishan area [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 398
[21] (郑 珉, 黄彦亮, 西方笃等. Q235钢在甘肃北山地区地下水模拟液及高压实膨润土环境下的腐蚀行为 [J]. 中国腐蚀与防护学报, 2016, 36: 398)
[22] Liu C S, Wang J Q, Zhang Z M, et al. Studies on corrosion behaviour of low carbon steel canister with and without γ-irradiation in China's HLW disposal repository [J]. Corros. Eng. Sci. Technol., 2017, 52(suppl.): 136
[23] Liu C S, Wang J Q, Zhang Z M, et al. Characterization of corrosion behavior of irradiated X65 low carbon steel in aerobic and unsaturated gaomiaozi bentonite [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 506
[24] Liu C S, Wang J Q, Zhang Z M, et al. Effect of cumulative gamma irradiation on microstructure and corrosion behaviour of X65 low carbon steel [J]. J. Mater. Sci. Technol., 2018, 34: 2131
[25] Dong J H, Nishimura T, Kodama T. Corrosion behavior of carbon steel in bicarbonate (HCO3) solutions [J]. MRS Proceedings, 2002, 713: JJ11.8
[26] Wen H L, Dong J H, Ke W, et al. Active/passive behavior of low carbon steel in deaerated bicarbonate solution [J]. Acta Metall. Sin., 2014, 50: 275
[26] (文怀梁, 董俊华, 柯 伟等. 模拟高放废物地质处置环境下重碳酸盐浓度对低碳钢活化/钝化腐蚀倾向的影响 [J]. 金属学报, 2014, 50: 275)
[27] Yang J F, Dong J H, Ke W. Effects of SO42- and Cl- on active/passive corrosion behaviors of low carbon steel in deaerated bicarbonate solution [J]. Acta Metall. Sin., 2011, 47: 1321
[27] (阳靖峰, 董俊华, 柯 伟. 重碳酸盐溶液中SO42-和Cl-对低碳钢活化/钝化腐蚀行为的影响 [J]. 金属学报, 2011, 47: 1321)
[28] Yang J F, Dong J H, Ke W, et al. Influence of pH values and corrosion products on low carbon steel corrosion susceptibility in borate buffer solution [J]. Acta Metall. Sin., 2011, 47: 152
[28] (阳靖峰, 董俊华, 柯 伟等. 硼酸缓冲溶液中pH值和腐蚀产物对低碳钢活化/钝化敏感性的影响 [J]. 金属学报, 2011, 47: 152)
[29] Sherar B W A, Keech P G, Shoesmith D W. Carbon steel corrosion under anaerobic-aerobic cycling conditions in near-neutral pH saline solutions—Part 1: Long term corrosion behaviour [J]. Corros. Sci., 2011, 53: 3636
[30] Sherar B W A, Keech P G, Shoesmith D W. Carbon steel corrosion under anaerobic-aerobic cycling conditions in near-neutral pH saline solutions. Part 2: Corrosion mechanism [J]. Corros. Sci., 2011, 53: 3643
[31] Martin F, Perrin S, Fenart M, et al. On corrosion of carbon steels in Callovo-Oxfordian clay: Complementary EIS, gravimetric and structural study providing insights on long term behaviour in French geological disposal conditions [J]. Corros. Eng. Sci. Technol., 2014, 49: 460
[32] Chen J, Qin Z, Shoesmith D W. Kinetics of corrosion film growth on copper in neutral chloride solutions containing small concentrations of sulfide [J]. J. Electrochem. Soc., 2010, 157: C338
[33] Wang J Z, Wang J Q. Influence of ethanolamine on corrosion of alloy 690 in simulated secondary water [J]. J. Mater. Sci. Technol., 2015, 31: 1039
[34] Lu Y F, Dong J H, Ke W. Effects of Cl? ions on the corrosion behaviour of low alloy steel in deaerated bicarbonate solutions [J]. J. Mater. Sci. Technol., 2016, 32: 341
[35] Pourbaix M. Significance of protection potential in pitting and intergranular corrosion [J]. Corrosion, 1970, 26: 431
[36] Cao C N. Principles of Electrochemistry of Corrosion [M]. Beijing: Chemical Industry Press, 2008: 205
[36] (曹楚南. 腐蚀电化学原理 [M]. 北京: 化学工业出版社, 2008: 205)
[37] Liu C S. Corrosion behaviour of X65 low carbon steel in the environment of high level nuclear waste repository [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2018
[37] (刘灿帅. 高放废物地质处置环境中X65低碳钢腐蚀行为研究 [D]. 沈阳: 中国科学院金属研究所, 2018)
[38] Shimizu K, Miyahara K, Hasegawa H, et al. H12: Project to establish the scientific and technical basis for HLW disposal in Japan [R]. Ibaraki: Japan Nuclear Cycle Development Institute, 2000
[39] Leygra C, Wallinder I O, Tidblad J, et al. Atmospheric Corrosion [M]. 2nd Ed., Hoboken: John Wiley & Sons, 2016: 110
[1] 曹凤婷, 魏洁, 董俊华, 柯伟, 王铁钢, 范其香. 羟基亚乙基二膦酸对20SiMn钢在含Cl-混凝土模拟孔隙液中的缓蚀行为[J]. 金属学报, 2020, 56(6): 898-908.
[2] 魏洁, 魏英华, 李京, 赵洪涛, 吕晨曦, 董俊华, 柯伟, 何小燕. 带损伤环氧涂层钢筋在Cl-和碳化耦合作用下的腐蚀行为[J]. 金属学报, 2020, 56(6): 885-897.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[5] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[6] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[7] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[8] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[9] 姚美意,张兴旺,侯可可,张金龙,胡鹏飞,彭剑超,周邦新. Zr-0.75Sn-0.35Fe-0.15Cr合金在250 ℃去离子水中的初期腐蚀行为[J]. 金属学报, 2020, 56(2): 221-230.
[10] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[11] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[12] 蔡超,李煬,李劲风,张昭,张鉴清. 2A97 Al-Li合金薄板时效析出与电位及晶间腐蚀的相关性研究[J]. 金属学报, 2019, 55(8): 958-966.
[13] 马荣耀,王长罡,穆鑫,魏欣,赵林,董俊华,柯伟. 静水压力对超纯Fe腐蚀行为的影响[J]. 金属学报, 2019, 55(7): 859-874.
[14] 李亚东,李强,唐晓,李焰. X80管线钢焊接接头的模拟重构及电偶腐蚀行为表征[J]. 金属学报, 2019, 55(6): 801-810.
[15] 陈星晨, 王杰, 陈德任, 钟舜聪, 王向峰. Na对于Al早期大气腐蚀的影响[J]. 金属学报, 2019, 55(4): 529-536.