|
|
GH536高温合金选区激光熔化温度场和残余应力的有限元模拟 |
文舒1, 董安平1,2( ), 陆燕玲3, 祝国梁1,2, 疏达1,2, 孙宝德1,2,4 |
1 上海交通大学材料科学与工程学院 上海 200240 2 上海交通大学先进高温材料及其精密成形重点实验室 上海 200240 3 中国科学院上海应用物理研究所 上海 201800 4 上海交通大学金属基复合材料国家重点实验室 上海 200240 |
|
Finite Element Simulation of the Temperature Field and Residual Stress in GH536 Superalloy Treated by Selective Laser Melting |
Shu WEN1, Anping DONG1,2( ), Yanling LU3, Guoliang ZHU1,2, Da SHU1,2, Baode SUN1,2,4 |
1 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2 Shanghai Key Lab of Advanced High-Temperature Materials and Precision Forming, Shanghai Jiao Tong University, Shanghai 200240, China 3 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China 4 State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China |
引用本文:
文舒, 董安平, 陆燕玲, 祝国梁, 疏达, 孙宝德. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟[J]. 金属学报, 2018, 54(3): 393-403.
Shu WEN,
Anping DONG,
Yanling LU,
Guoliang ZHU,
Da SHU,
Baode SUN.
Finite Element Simulation of the Temperature Field and Residual Stress in GH536 Superalloy Treated by Selective Laser Melting[J]. Acta Metall Sin, 2018, 54(3): 393-403.
[1] | Huang W P, Yu H C, Yin J, et al.Microstructure and mechanical properties of K4202 cast nickel base superalloy fabricated by selective laser melting[J]. Acta Metall. Sin., 2016, 52: 1089(黄文普, 喻寒琛, 殷杰等. 激光选区熔化成形K4202镍基铸造高温合金的组织和性能 [J]. 金属学报, 2016, 52: 1089) | [2] | Jia Q B, Gu D D.Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties[J]. J. Alloys Compd., 2014, 585: 713 | [3] | Zhang B C, Fenineche N E, Liao H L, et al.Microstructure and magnetic properties of Fe-Ni alloy fabricated by selective laser melting Fe/Ni mixed powders[J]. J. Mater. Sci. Technol., 2013, 29: 757 | [4] | Kruth J P, Mercelis P, Van Vaerenbergh J, et al.Binding mechanisms in selective laser sintering and selective laser melting[J]. Rapid Prototyping J., 2005, 11: 26 | [5] | Yadroitsev I, Bertrand P, Smurov I.Parametric analysis of the selective laser melting process[J]. Appl. Surf. Sci., 2007, 253: 8064 | [6] | Yang J X, Xu F T, Zhou D L, et al.Effects of re-melting processes on the tensile properties of K452 alloy at high temperature[J]. Acta Metall. Sin., 2017, 53: 703(杨金侠, 徐福涛, 周动林等. 重熔工艺对K452合金高温拉伸性能的影响 [J]. 金属学报, 2017, 53: 703) | [7] | Wang F D.Mechanical property study on rapid additive layer manufacture Hastelloy? X alloy by selective laser melting technology[J]. Int. J. Adv. Manuf. Technol., 2012, 58: 545 | [8] | Song B, Zhao X, Li S, et al.Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: A review[J]. Front. Mech. Eng., 2015, 10: 111 | [9] | Roberts I A, Wang C J, Esterlein R, et al.A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing[J]. Int. J. Mach. Tools Manuf., 2009, 49: 916 | [10] | Zhang D Q, Cai Q Z, Liu J H, et al.Select laser melting of W-Ni-Fe powders: Simulation and experimental study[J]. Int. J. Adv. Manuf. Technol., 2010, 51: 649 | [11] | Hussein A, Hao L, Yan C Z, et al.Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting[J]. Mater. Des., 2013, 52: 638 | [12] | Cheng B, Shrestha S, Chou K.Stress and deformation evaluations of scanning strategy effect in selective laser melting[J]. Addit. Manuf., 2016, 12: 240 | [13] | Papadakis L, Loizou A, Risse J, et al.A computational reduction model for appraising structural effects in selective laser melting manufacturing: A methodical model reduction proposed for time-efficient finite element analysis of larger components in selective laser melting[J]. Virt. Phys. Prototyping, 2014, 9: 17 | [14] | Dai K, Shaw L.Finite element analysis of the effect of volume shrinkage during laser densification[J]. Acta Mater., 2005, 53: 4743 | [15] | Yilbas B S, Arif A F M. Material response to thermal loading due to short pulse laser heating[J]. Int. J. Heat Mass Transfer, 2001, 44: 3787 | [16] | Tsirkas S A, Papanikos P, Kermanidis T.Numerical simulation of the laser welding process in butt-joint specimens[J]. J. Mater. Process. Technol., 2003, 134: 59 | [17] | Yin J, Zhu H H, Ke L D, et al.Simulation of temperature distribution in single metallic powder layer for laser micro-sintering[J]. Comput. Mater. Sci., 2012, 53: 333 | [18] | Foroozmehr A, Badrossamay M, Foroozmehr E, et al.Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed[J]. Mater. Des., 2016, 89: 255 | [19] | Ma L, Bin H Z.Temperature and stress analysis and simulation in fractal scanning-based laser sintering[J]. Int. J. Adv. Manuf. Technol., 2007, 34: 898 | [20] | Hou H P, Liang Y C, He Y L, et al.Microstructural evolution and tensile property of hastelloy-X alloys produced by selective laser melting[J]. Chin. J. Lasers, 2017, 44: 0202007(侯慧鹏, 梁永朝, 何艳丽等. 选区激光熔化Hastelloy-X合金组织演变及拉伸性能 [J]. 中国激光, 2017, 44: 0202007) | [21] | Fischer P, Romano V, Weber H P, et al.Sintering of commercially pure titanium powder with a Nd: YAG laser source[J]. Acta Mater., 2003, 51: 1651 | [22] | Zhou W X, Wang X, Hu J B, et al.Melting process and mechanics on laser sintering of single layer polyamide 6 powder[J]. Int. J. Adv. Manuf. Technol., 2013, 69: 901 | [23] | Yin J, Zhu H H, Ke L D, et al.A finite element model of thermal evolution in laser micro sintering[J]. Int. J. Adv. Manuf. Technol., 2016, 83: 1847 | [24] | Tolochko N K, Khlopkov Y V, Mozzharov S E, et al.Absorptance of powder materials suitable for laser sintering[J]. Rapid Prototyping J., 2000, 6: 155 | [25] | Zhao M, Xu L Y, Zhang K S.Low cycle creep-fatigue behavior of nickel base superalloy GH536[J]. Mech. Sci. Technol., 2003, 22: 639(赵明, 徐林耀, 张克实. GH536合金高温低周疲劳/蠕变交互作用性能研究 [J]. 机械科学与技术, 2003, 22: 639) | [26] | Criales L E, Ar?soy Y M, ?zel T.Sensitivity analysis of material and process parameters in finite element modeling of selective laser melting of Inconel 625[J]. Int. J. Adv. Manuf. Technol., 2016, 86: 2653 | [27] | Dong L, Makradi A, Ahzi S, et al.Three-dimensional transient finite element analysis of the selective laser sintering process[J]. J. Mater. Process. Technol., 2009, 209: 700 | [28] | Yu H C, Wu X R.Material Data Book for Aircraft Engine Design: Fourth Volume [M]. Beijing: Aviation Industry Press, 2010: 107(于慧臣, 吴学仁. 航空发动机设计用材料数据手册: 第四册 [M]. 北京: 航空工业出版社, 2010: 107) | [29] | Li Y L, Gu D D.Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder[J]. Mater. Des., 2014, 63: 856 | [30] | Alimardani M, Toyserkani E, Huissoon J P, et al.On the delamination and crack formation in a thin wall fabricated using laser solid freeform fabrication process: An experimental-numerical investigation[J]. Opt. Lasers Eng., 2009, 47: 1160 | [31] | Gu D D, Shen Y F.Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods[J]. Mater. Des., 2009, 30: 2903 | [32] | Li R D, Liu J H, Shi Y S, et al.Balling behavior of stainless steel and nickel powder during selective laser melting process[J]. Int. J. Adv. Manuf. Technol., 2012, 59: 1025 | [33] | Harrison N J, Todd I, Mumtaz K.Reduction of micro-cracking in nickel superalloys processed by selective laser melting: A fundamental alloy design approach[J]. Acta Mater., 2015, 94: 59 | [34] | Davies H A, Shohoji N, Warrington D H.The structure of rapidly quenched nickel-based superalloy ribbons produced by melt spinning [A]. Proceedings of the 2nd International Conference on Rapid Solidification Processing [C]. Baton Rouge, LA: Claitor's Publishing Division, 1980 | [35] | Shiomi M, Osakada K, Nakamura K, et al.Residual stress within metallic model made by selective laser melting process[J]. CIRP Ann., 2004, 53: 195 | [36] | Zaeh M F, Branner G.Investigations on residual stresses and deformations in selective laser melting[J]. Prod. Eng., 2010, 4: 35 | [37] | Vrancken B, Cain V, Knutsen R, et al.Residual stress via the contour method in compact tension specimens produced via selective laser melting[J]. Scr. Mater., 2014, 87: 29 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|