Please wait a minute...
金属学报  2018, Vol. 54 Issue (3): 393-403    DOI: 10.11900/0412.1961.2017.00284
  本期目录 | 过刊浏览 |
GH536高温合金选区激光熔化温度场和残余应力的有限元模拟
文舒1, 董安平1,2(), 陆燕玲3, 祝国梁1,2, 疏达1,2, 孙宝德1,2,4
1 上海交通大学材料科学与工程学院 上海 200240
2 上海交通大学先进高温材料及其精密成形重点实验室 上海 200240
3 中国科学院上海应用物理研究所 上海 201800
4 上海交通大学金属基复合材料国家重点实验室 上海 200240
Finite Element Simulation of the Temperature Field and Residual Stress in GH536 Superalloy Treated by Selective Laser Melting
Shu WEN1, Anping DONG1,2(), Yanling LU3, Guoliang ZHU1,2, Da SHU1,2, Baode SUN1,2,4
1 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 Shanghai Key Lab of Advanced High-Temperature Materials and Precision Forming, Shanghai Jiao Tong University, Shanghai 200240, China
3 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
4 State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

文舒, 董安平, 陆燕玲, 祝国梁, 疏达, 孙宝德. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟[J]. 金属学报, 2018, 54(3): 393-403.
Shu WEN, Anping DONG, Yanling LU, Guoliang ZHU, Da SHU, Baode SUN. Finite Element Simulation of the Temperature Field and Residual Stress in GH536 Superalloy Treated by Selective Laser Melting[J]. Acta Metall Sin, 2018, 54(3): 393-403.

全文: PDF(4416 KB)   HTML
摘要: 

计算了GH536高温合金选区激光熔化(SLM)过程中熔池区域的温度场变化和凝固后残余应力分布。计算采用复合Gauss热源研究激光光学穿透深度的影响规律,通过研究材料属性随温度的变化关系实现粉层、熔池及固态金属的转化。实验结果表明,Gauss热源模型能够较好地模拟SLM过程中的温度场分布以及凝固后的残余应力。模拟结果显示,随着激光功率的增大,熔池宽度、深度和长度均相应增大,凝固速率减小;随着扫描速率增大,熔池宽度和深度减小,长度不变,凝固速率增大。计算结果表明,单层选区激光熔化的零件表面存在较大的拉应力,随着深度增大,拉应力迅速减小转为压应力。

关键词 GH536高温合金选区激光熔化残余应力有限元模拟    
Abstract

In the aerospace industry, due to the increasing hardness and tensile strength of nickel-based superalloys, the traditional manufacturing methods are difficult to produce, which limits the freedom of part design and process. Selective laser melting (SLM) has great potential in this field with its additive manufacturing concept and full melting during the process. Although the dense part can be easily obtained in SLM, the residual stresses and micro-cracks in the machining process still affect the dimensional accuracy and reliability of the parts. In SLM process, rapid and complex changes of temperature and stress are observed in the vicinity of the molten pool. Understanding these changes will help to improve the quality of the process. In this work, a finite element model (FEM) is established to calculate the temperature and residual stress distribution near the weld pool during the SLM of Hastelloy X superalloy, The model uses a composite Gauss heat source to consider the influence of optical penetration depth, and implements the transformation of powder, molten pool and solid metal by changing the material properties with temperature. Comparison with the test results shows that the model can simulate the distribution of temperature field and the residual stress in SLM process well. The simulation results show that with the increase of laser power, the width, length and depth of melting pool were enlarged, the cooling rate decreases; with the increase of the scanning speed, the width and depth of melting pool decreases, the length remained unchanged, the cooling rate increase. After cooling, there is a large tensile stress on the surface of the model. As the depth increases, the tensile stress decreases rapidly and eventually becomes compressive stress.

Key wordsGH536 superalloy    selective laser melting    residual stress    finite element simulation
收稿日期: 2017-07-07     
基金资助:资助项目 国家自然科学基金项目Nos.51771118、U1760110、51674237和航空科学基金重点项目No.2015ZE57011
作者简介:

作者简介 文 舒,男,1992年生,硕士生

图1  选区激光熔化(SLM)过程有限元模型
Process parameter Value Unit
Powder bed thickness h 40 μm
Hatch spacing Hs 90 μm
Laser spot size D 100 μm
Scanning speed v 900, 1100, 1300 mms-1
Initial temperature T0 20
Power P 150, 200, 250 W
表1  模拟使用的工艺参数
图2  SLM激光功率200 W,扫描速率1100 mm/s下GH536高温合金熔池低倍OM和高倍SEM像
图3  SLM激光功率200 W,扫描速率1100 mm/s下图1中模型点1和点6处熔池横截面等温线和上表面等温线
图4  不同激光功率下图1中模型点6处熔池横截面等温线和上表面等温线
图5  熔池尺寸和长宽比随激光功率变化情况
图6  不同扫描速率下图1中模型点6处熔池横截面等温线和上表面等温线
图7  熔池尺寸和长宽比随扫描速率变化情况
图8  SLM功率200 W,扫描速率1100 mm/s下图1模型中点2、3、4和5处温度随时间变化曲线
图9  扫描速率为1100 mm/s 时不同功率下图1中模型点3处温度随时间变化曲线
图10  激光功率200 W 不同扫描速率下图1中模型点3处温度随时间变化曲线
图11  SLM功率200 W,扫描速率1100 mm/s参数下制备的应力测试块
图12  不同激光功率和扫描速率下模型计算得到的等效残余应力σMises
图13  不同SLM工艺参数下图1中模型上表面线1上残余应力分布情况
图14  不同SLM工艺参数下图1中模型深度方向线2上残余应力分布情况
[1] Huang W P, Yu H C, Yin J, et al.Microstructure and mechanical properties of K4202 cast nickel base superalloy fabricated by selective laser melting[J]. Acta Metall. Sin., 2016, 52: 1089(黄文普, 喻寒琛, 殷杰等. 激光选区熔化成形K4202镍基铸造高温合金的组织和性能 [J]. 金属学报, 2016, 52: 1089)
[2] Jia Q B, Gu D D.Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties[J]. J. Alloys Compd., 2014, 585: 713
[3] Zhang B C, Fenineche N E, Liao H L, et al.Microstructure and magnetic properties of Fe-Ni alloy fabricated by selective laser melting Fe/Ni mixed powders[J]. J. Mater. Sci. Technol., 2013, 29: 757
[4] Kruth J P, Mercelis P, Van Vaerenbergh J, et al.Binding mechanisms in selective laser sintering and selective laser melting[J]. Rapid Prototyping J., 2005, 11: 26
[5] Yadroitsev I, Bertrand P, Smurov I.Parametric analysis of the selective laser melting process[J]. Appl. Surf. Sci., 2007, 253: 8064
[6] Yang J X, Xu F T, Zhou D L, et al.Effects of re-melting processes on the tensile properties of K452 alloy at high temperature[J]. Acta Metall. Sin., 2017, 53: 703(杨金侠, 徐福涛, 周动林等. 重熔工艺对K452合金高温拉伸性能的影响 [J]. 金属学报, 2017, 53: 703)
[7] Wang F D.Mechanical property study on rapid additive layer manufacture Hastelloy? X alloy by selective laser melting technology[J]. Int. J. Adv. Manuf. Technol., 2012, 58: 545
[8] Song B, Zhao X, Li S, et al.Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: A review[J]. Front. Mech. Eng., 2015, 10: 111
[9] Roberts I A, Wang C J, Esterlein R, et al.A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing[J]. Int. J. Mach. Tools Manuf., 2009, 49: 916
[10] Zhang D Q, Cai Q Z, Liu J H, et al.Select laser melting of W-Ni-Fe powders: Simulation and experimental study[J]. Int. J. Adv. Manuf. Technol., 2010, 51: 649
[11] Hussein A, Hao L, Yan C Z, et al.Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting[J]. Mater. Des., 2013, 52: 638
[12] Cheng B, Shrestha S, Chou K.Stress and deformation evaluations of scanning strategy effect in selective laser melting[J]. Addit. Manuf., 2016, 12: 240
[13] Papadakis L, Loizou A, Risse J, et al.A computational reduction model for appraising structural effects in selective laser melting manufacturing: A methodical model reduction proposed for time-efficient finite element analysis of larger components in selective laser melting[J]. Virt. Phys. Prototyping, 2014, 9: 17
[14] Dai K, Shaw L.Finite element analysis of the effect of volume shrinkage during laser densification[J]. Acta Mater., 2005, 53: 4743
[15] Yilbas B S, Arif A F M. Material response to thermal loading due to short pulse laser heating[J]. Int. J. Heat Mass Transfer, 2001, 44: 3787
[16] Tsirkas S A, Papanikos P, Kermanidis T.Numerical simulation of the laser welding process in butt-joint specimens[J]. J. Mater. Process. Technol., 2003, 134: 59
[17] Yin J, Zhu H H, Ke L D, et al.Simulation of temperature distribution in single metallic powder layer for laser micro-sintering[J]. Comput. Mater. Sci., 2012, 53: 333
[18] Foroozmehr A, Badrossamay M, Foroozmehr E, et al.Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed[J]. Mater. Des., 2016, 89: 255
[19] Ma L, Bin H Z.Temperature and stress analysis and simulation in fractal scanning-based laser sintering[J]. Int. J. Adv. Manuf. Technol., 2007, 34: 898
[20] Hou H P, Liang Y C, He Y L, et al.Microstructural evolution and tensile property of hastelloy-X alloys produced by selective laser melting[J]. Chin. J. Lasers, 2017, 44: 0202007(侯慧鹏, 梁永朝, 何艳丽等. 选区激光熔化Hastelloy-X合金组织演变及拉伸性能 [J]. 中国激光, 2017, 44: 0202007)
[21] Fischer P, Romano V, Weber H P, et al.Sintering of commercially pure titanium powder with a Nd: YAG laser source[J]. Acta Mater., 2003, 51: 1651
[22] Zhou W X, Wang X, Hu J B, et al.Melting process and mechanics on laser sintering of single layer polyamide 6 powder[J]. Int. J. Adv. Manuf. Technol., 2013, 69: 901
[23] Yin J, Zhu H H, Ke L D, et al.A finite element model of thermal evolution in laser micro sintering[J]. Int. J. Adv. Manuf. Technol., 2016, 83: 1847
[24] Tolochko N K, Khlopkov Y V, Mozzharov S E, et al.Absorptance of powder materials suitable for laser sintering[J]. Rapid Prototyping J., 2000, 6: 155
[25] Zhao M, Xu L Y, Zhang K S.Low cycle creep-fatigue behavior of nickel base superalloy GH536[J]. Mech. Sci. Technol., 2003, 22: 639(赵明, 徐林耀, 张克实. GH536合金高温低周疲劳/蠕变交互作用性能研究 [J]. 机械科学与技术, 2003, 22: 639)
[26] Criales L E, Ar?soy Y M, ?zel T.Sensitivity analysis of material and process parameters in finite element modeling of selective laser melting of Inconel 625[J]. Int. J. Adv. Manuf. Technol., 2016, 86: 2653
[27] Dong L, Makradi A, Ahzi S, et al.Three-dimensional transient finite element analysis of the selective laser sintering process[J]. J. Mater. Process. Technol., 2009, 209: 700
[28] Yu H C, Wu X R.Material Data Book for Aircraft Engine Design: Fourth Volume [M]. Beijing: Aviation Industry Press, 2010: 107(于慧臣, 吴学仁. 航空发动机设计用材料数据手册: 第四册 [M]. 北京: 航空工业出版社, 2010: 107)
[29] Li Y L, Gu D D.Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder[J]. Mater. Des., 2014, 63: 856
[30] Alimardani M, Toyserkani E, Huissoon J P, et al.On the delamination and crack formation in a thin wall fabricated using laser solid freeform fabrication process: An experimental-numerical investigation[J]. Opt. Lasers Eng., 2009, 47: 1160
[31] Gu D D, Shen Y F.Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods[J]. Mater. Des., 2009, 30: 2903
[32] Li R D, Liu J H, Shi Y S, et al.Balling behavior of stainless steel and nickel powder during selective laser melting process[J]. Int. J. Adv. Manuf. Technol., 2012, 59: 1025
[33] Harrison N J, Todd I, Mumtaz K.Reduction of micro-cracking in nickel superalloys processed by selective laser melting: A fundamental alloy design approach[J]. Acta Mater., 2015, 94: 59
[34] Davies H A, Shohoji N, Warrington D H.The structure of rapidly quenched nickel-based superalloy ribbons produced by melt spinning [A]. Proceedings of the 2nd International Conference on Rapid Solidification Processing [C]. Baton Rouge, LA: Claitor's Publishing Division, 1980
[35] Shiomi M, Osakada K, Nakamura K, et al.Residual stress within metallic model made by selective laser melting process[J]. CIRP Ann., 2004, 53: 195
[36] Zaeh M F, Branner G.Investigations on residual stresses and deformations in selective laser melting[J]. Prod. Eng., 2010, 4: 35
[37] Vrancken B, Cain V, Knutsen R, et al.Residual stress via the contour method in compact tension specimens produced via selective laser melting[J]. Scr. Mater., 2014, 87: 29
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[3] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[4] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[7] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[8] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[9] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[10] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[11] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[12] 王孟, 杨永强, Trofimov Vyacheslav, 宋长辉, 周瀚翔, 王迪. 粉末粒径对AlSi10Mg合金选区激光熔化成形的影响[J]. 金属学报, 2023, 59(1): 147-156.
[13] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[14] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[15] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.