Please wait a minute...
金属学报  2017, Vol. 53 Issue (4): 447-454    DOI: 10.11900/0412.1961.2016.00389
  本期目录 | 过刊浏览 |
β-(Nb, Zr)第二相合金在360 ℃去离子水中的腐蚀行为
陈兵1,2,高长源1,2,黄娇1,2,毛亚婧1,2,姚美意1,2(),张金龙1,2,周邦新1,2,李强1,2
1 上海大学材料研究所 上海 200072
2 上海大学微结构重点实验室 上海200444
Corrosion Behavior of Second Phase Alloys of β-(Nb, Zr) in Deionized Water at 360 ℃
Bing CHEN1,2,Changyuan GAO1,2,Jiao HUANG1,2,Yajing MAO1,2,Meiyi YAO1,2(),Jinlong ZHANG1,2,Bangxin ZHOU1,2,Qiang LI1,2
1 Institute of Materials, Shanghai University, Shanghai 200072, China
2 Laboratory for Microstructures, Shanghai University, Shanghai 200444, China
引用本文:

陈兵,高长源,黄娇,毛亚婧,姚美意,张金龙,周邦新,李强. β-(Nb, Zr)第二相合金在360 ℃去离子水中的腐蚀行为[J]. 金属学报, 2017, 53(4): 447-454.
Bing CHEN, Changyuan GAO, Jiao HUANG, Yajing MAO, Meiyi YAO, Jinlong ZHANG, Bangxin ZHOU, Qiang LI. Corrosion Behavior of Second Phase Alloys of β-(Nb, Zr) in Deionized Water at 360 ℃[J]. Acta Metall Sin, 2017, 53(4): 447-454.

全文: PDF(7407 KB)   HTML
摘要: 

为了研究锆合金中β-Nb第二相粒子的腐蚀行为,利用真空非自耗电弧炉熔炼了2种β-(Nb, Zr)第二相合金,分别为90Nb-10Zr合金和50Nb-50Zr合金,在静态高压釜中进行360 ℃、18.6 MPa、去离子水的腐蚀实验,利用带EDS的SEM和TEM分析腐蚀生成氧化膜的显微组织。结果表明:90Nb-10Zr合金与50Nb-50Zr合金的氧化产物都为非晶氧化物与晶态氧化物,其中90Nb-10Zr合金腐蚀生成的晶态氧化物为单斜结构的Nb2O5,而50Nb-50Zr合金腐蚀生成的晶态氧化物为四方结构的(Zr, Nb)O2

关键词 锆合金β-(NbZr)合金腐蚀    
Abstract

Zirconium alloys are widely used as fuel cladding materials in water-cooled nuclear power reactors due to their low thermal neutron cross-section, good mechanical properties and corrosion resistance. The waterside corrosion is one of main factors that influence the service life of zirconium alloys. The corrosion of zirconium alloys occurs at the oxide/metal (O/M) interface, so the characteristics of the oxide film do have an impact on the oxidation process of zirconium alloys, which are affected by the oxidation behavior of second phase particles (SPPs) in zirconium alloys. E110 (Zr-1Nb, mass fraction, %) and M5 (Zr-1Nb-0.16O) alloys are Zr-Nb series alloys used in commercial presently. The major SPPs in Zr-Nb series alloys are bcc β-Nb. β-Nb SPPs in zirconium alloys are very fine, and it is inconvenient to analyze their oxidation processes due to the effect of α-Zr matrix. Therefore, based on the composition and crystal structure of β-Nb, two kinds of β-(Nb, Zr) SPPs alloys, 90Nb-10Zr and 50Nb-50Zr alloys were prepared by vacuum non-consumable arc smelting, and were corroded in autoclave with deionized water at 360 ℃ and 18.6 MPa for 11 d. XRD was used to analyze the crystal structure and phase composition of β-(Nb, Zr) specimens before and after oxidation. SEM and TEM equipped with EDS were used to investigate the microstructures of the external surface and the cross-section of oxide layers. Results show that the 90Nb-10Zr and 50Nb-50Zr alloys are oxidized into amorphous and crystalline oxides. The crystalline oxide formed on 90Nb-10Zr alloy is monoclinic Nb2O5, but the crystalline oxide formed on 50Nb-50Zr alloy is tetragonal (Zr, Nb)O2.

Key wordszirconium alloy    β-(NbZr) alloy    corrosion
收稿日期: 2016-08-26     
基金资助:国家自然科学基金项目No.51471102和国家先进压水堆重大专项项目No.2011ZX06004-023
图1  90Nb-10Zr合金和50Nb-50Zr合金腐蚀前的XRD谱
图2  铸态90Nb-10Zr和50Nb-50Zr合金的显微组织
图3  90Nb-10Zr和50Nb-50Zr合金在360 ℃、18.6 MPa、去离子水中腐蚀11 d时的氧化膜外表面SEM像
图4  90Nb-10Zr和50Nb-50Zr合金在360 ℃、18.6 MPa、去离子水中腐蚀11 d时的XRD谱
图5  90Nb-10Zr合金在360 ℃、18.6 MPa、去离子水中腐蚀11 d时的氧化膜TEM像
图6  90Nb-10Zr合金在360 ℃、18.6 MPa、去离子水中腐蚀11 d时的氧化膜TEM像、SAED图及HRTEM像和FFT得到的晶体结构信息
图7  90Nb-10Zr合金在360 ℃、18.6 MPa、去离子水中腐蚀11 d时的针状氧化物的TEM像、SAED图和EDS谱
图8  50Nb-50Zr合金在360 ℃、18.6 MPa、去离子水中腐蚀11 d时的氧化膜HAADF像
Position Nb Zr O
1 63.65 4.74 31.62
2 67.50 3.81 28.69
3 61.02 4.10 34.88
表1  图6a中3个位置的EDS结果
图9  50Nb-50Zr合金在360 ℃、18.6 MPa、去离子水中腐蚀11 d时的氧化膜TEM像、SAED图和EDS结果
图10  50Nb-50Zr合金氧化膜layer 1中的位置2、3和6 (图9a)的HRTEM像和FFT结果
[1] Zhou W J, Zhou B X, Miao Z, et al.Development of Chinese advanced zirconium alloys[J]. At. Energy Sci. Technol., 2005, 39(Suppl.): 2
[1] (赵文金, 周邦新, 苗志等. 我国高性能锆合金的发展[J]. 原子能科学技术, 2005, 39(增刊): 2)
[2] Bojinov M, Karastoyanov V, Kinnunen P, et al.Influence of water chemistry on the corrosion mechanism of a zirconium-niobium alloy in simulated light water reactor coolant conditions[J]. Corros. Sci., 2010, 52: 54
[3] Nikulina A V, Markelov V A, Peregud M M.Zirconium alloy E635 as a material for fuel rod cladding and other components of VVER and RBMK cores [A]. Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295[C]. West Conshohocken, Philadelphia: American Society for Testing and Materials, 1996: 785
[4] Müller S, Lanzani L.Corrosion of zirconium alloys in concentrated lithium hydroxide solutions[J]. J. Nucl. Mater., 2013, 439: 251
[5] Anada H, Takeda K.Microstructure of oxides on zircaloy-4, 1.0 Nb zircaloy-4, and zircaloy-2 formed in 10.3-MPa steam at 673 K [A]. Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295[C]. West Conshohocken, Philadelphia: American Society for Testing and Materials, 1996: 35
[6] Perkins R A, Busch R A.Corrosion of zircaloy in the presence of LiOH [A]. Zirconium in the Nuclear Industry: Ninth International Symposium, ASTM STP 1132[C]. Philadelphia: American Society for Testing and Materials, 1991: 595
[7] Shebaldov P V, Peregud M M, Nikulina A V, et al.E110 alloy cladding tube properties and their interrelation with alloy structure-phase condition and impurity content [A]. Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354[C]. Philadelphia: American Society for Testing and Materials, 2000: 545
[8] Sun F T, Yao M Y, Xu L, et al.Effect of adding dilute Si on corrosion resistance of zirconium alloys[J]. J. Shanghai Univ.(Nat. Sci.), 2015, 21: 182
[8] (孙风涛, 姚美意, 徐龙等. 添加微量Si对锆合金耐腐蚀性能的影响[J]. 上海大学学报(自然科学版), 2015, 21: 182)
[9] Kim H G, Choi B K, Park J Y, et al.Analysis of oxidation behavior of the β-Nb phase formed in Zr-1.5Nb alloy by using the HVEM[J]. J. Alloys Compd., 2009, 481: 867
[10] Yang W D.Reactor Materials Science [M]. Beijing: Atomic Energy Press, 2000: 19
[10] (杨文斗. 反应堆材料学 [M]. 北京: 原子能出版社, 2000: 19)
[11] Sabol G P, Comstock R J, Nayak U P.Effect of dilute alloy additions of molybdenum, niobium, and vanadium on zirconium corrosion [A]. Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354[C]. Philadelphia: American Society for Testing and Materials, 2000: 525
[12] Li Q, Liang X, Peng J C, et al.Oxidation behavior of the β-Nb phase precipitated in Zr-2.5Nb alloy[J]. Acta Metall. Sin., 2011, 47: 893
[12] (李强, 梁雪, 彭剑超等. Zr-2.5Nb合金中β-Nb相的氧化过程[J]. 金属学报, 2011, 47: 893)
[13] Gong W J, Zhang H L, Wu C F, et al.The role of alloying elements in the initiation of nanoscale porosity in oxide films formed on zirconium alloys[J]. Corros. Sci., 2013, 77: 391
[14] Proff C, Abolhassani S, Lemaignan C.Oxidation behaviour of binary zirconium alloys containing intermetallic precipitates[J]. J. Nucl. Mater., 2011, 416: 125
[15] Proff C, Abolhassani S, Lemaignan C.Oxidation behaviour of zirconium alloys and their precipitates——A mechanistic study[J]. J. Nucl. Mater., 2013, 432: 222
[16] Pêcheur D, Lefebvre F, Motta A T, et al.Precipitate evolution in the zircaloy-4 oxide layer[J]. J. Nucl. Mater., 1992, 189: 318
[17] Pêcheur D.Oxidation of β-Nb and Zr(Fe, V)2 precipitates in oxide films formed on advanced Zr-based alloys[J]. J. Nucl. Mater., 2000, 278: 195
[18] Yilmazbayhan A, Breval E, Motta A T, et al.Transmission electron microscopy examination of oxide layers formed on Zr alloys[J]. J. Nucl. Mater., 2006, 349: 265
[19] Yao M Y, Gao C Y, Huang J, et al.Oxidation behavior of β-Nb precipitates in Zr-1Nb-0.2Bi alloy corroded in lithiated water at 360 ℃[J]. Corros. Sci., 2015, 100: 169
[20] Cao X X.Study on the corrosion behavior of the second phase particles in zirconium alloy [D]. Shanghai: Shanghai University, 2010
[20] (曹潇潇. 锆合金中第二相腐蚀行为研究 [D]. 上海: 上海大学, 2010)
[21] Huang J, Yao M Y, Gao C Y, et al.Analysis of the oxidized surface of 90Nb-10Zr alloy after exposure to lithiated water with 0.01 M LiOH at 360 ℃/18.6 MPa[J]. Corros. Sci., 2016, 104: 269
[22] Shen Y F.Effect of β-quenching and annealing treatments on the corrosion resistance of zircaloy-4 [D]. Shanghai: Shanghai University, 2012
[22] (沈月锋. β相水淬及退火处理对Zr-4合金耐腐蚀性能的影响 [D]. 上海: 上海大学, 2012)
[23] Liang P Y, Dupin N, Fries S G, et al.Thermodynamic assessment of the Zr-O binary system[J]. Z. Metallk., 2001, 92: 747
[24] Pérez R J, Massih A R.Thermodynamic evaluation of the Nb-O-Zr system[J]. J. Nucl. Mater., 2007, 360: 242
[25] Ondik H M, McMurdie H F. Phase Diagrams for Zirconium and Zirconia Systems[M]. Ohio: The American Ceramic Society, 1998: 145
[26] Cambridge U O.The Interactive Ellingham Diagram, Dissemination of IT for the Promotion of Materials Science,
[1] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[2] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[3] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[4] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[5] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[6] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[7] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[8] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[9] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[10] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[11] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[12] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[13] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[14] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[15] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.