Please wait a minute...
金属学报  2010, Vol. 46 Issue (8): 959-966    DOI: 10.3724/SP.J.1037.2010.00005
  论文 本期目录 | 过刊浏览 |
冷却速率对变形与未变形X80管线钢组织的影响
邓伟,高秀华, 秦小梅, 高鑫, 赵德文, 杜林秀
东北大学轧制技术及连轧自动化国家重点实验室, 沈阳 110819
EFFECT OF COOLING RATE ON MICROSTRUCTURE OF DEFORMED AND UNDEFORMED X80 PIPELINE STEELS
DENG Wei, GAO Xiuhua, QIN Xiaomei, GAO Xin, ZHAO Dewen, DU Linxiu
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
引用本文:

邓伟 高秀华 秦小梅 高鑫 赵德文 杜林秀. 冷却速率对变形与未变形X80管线钢组织的影响[J]. 金属学报, 2010, 46(8): 959-966.
, , , , , . EFFECT OF COOLING RATE ON MICROSTRUCTURE OF DEFORMED AND UNDEFORMED X80 PIPELINE STEELS[J]. Acta Metall Sin, 2010, 46(8): 959-966.

全文: PDF(4604 KB)  
摘要: 

通过相同温度、不同冷却速率下不变形和变形量为0.7的热模拟压缩实验,研究了冷却速率对变形和未变形X80管线钢组织的影响. 结果表明:与未变形试样比较, 真应变0.7的变形使X80管线钢的贝氏体转变开始温度提高了30-80 ℃, 且冷却速率越大, 相变点越低, 相变经历的时间越短. 无变形试样连续冷却时得到的组织主要为贝氏体, 且存在原始奥氏体晶界.真应变为0.7时, 在1-40 ℃/s范围内, 随冷却速率增加, X80管线钢的组织依次为: 多边形铁素体、准多边形铁素体、块状铁素体、粒状贝氏体、针状铁素体(+粒状贝氏体)和板条贝氏体. 淬火组织为马氏体. X80管线钢在真应变为0.7的条件下获得针状铁素体(贝氏体铁素体)的冷却速率范围为10-20 ℃/s. 在该范围内, 冷却速率越大, 大角度晶界比例越高, 晶粒越细小.

关键词 X80管线钢 相变动力学 针状铁素体 电子背散射衍射(EBSD) 大角度晶界(HAGB)    
Abstract

The effects of cooling rate and deformation on microstructures of an X80 pipeline steel were investigated by thermo–mechanically simulated tests heated up to the same temperature and cooled at different rates under 0 and 0.7 true strain deformation. The results reveal that the start temperature for bainite transformation will be increased by 30—80 ℃higher under 0.7 true strain than under no deformation. But the increase of cooling rate depresses the start temperature for bainite transformation and accelerates the progress of its transformation. It is found that the microstructure of the cooled samples without deformation is all composed of bainite with prior austenite grain boundaries (PAGB), but it is complicated for the cooled samples under 0.7 true strain. In the range of 1—40 ℃/s, with the increase of cooling rate, microstructures appeare successively such as polygonal ferrite, quasi–polygonal ferrite, massive ferrite, granular bainite, acicular ferrite (+ granular bainite) and athy bainite. Full martnsite steel can be acheved by quenching. Under current experiment conditions, acicular ferrite can be obtained n the steel at cooling rates of 10—20 ℃/s. In this cooing ate range, the fraction of high angle grain boundaries (HAGBs) inceases and the grain size decreases with the increase of cooling rate.

Key wordsX80 pipeline steel    phase transformaton kinetics    cicular ferrite    electron backscattering diffraction (EBSD)    high ange grain boundary (HAGB)
收稿日期: 2010-01-05     
基金资助:

中央高校基本科研业务费专项资金项目N090607002, 国家自然科学基金项目50474015及国家重点实验室自主课题基金项目RAL--SD--2008--2资助

作者简介: 邓伟, 男, 1983生, 博士生
[1] Kim Y M, Kim S K, Lim Y J, Kim N J. ISIJ Int, 2002; 42: 1571 [2] Zhao M C, Shan Y Y, Xiao F R, Yang K, Li Y H. Mater Lett, 2002; 57: 141 [3] Bakkaloglu A. Mater Lett, 2002; 56: 200 [4] Zhao M C, Yang K, Shan Y Y. Mater Lett, 2003;57: 1496 [5] Zhao M C, Yang K, Xiao F R, Shan Y Y. Mater Sci Eng A,2003;355: 126 [6] Xiao F R, Liao B, Ren D L, Shan Y Y, Yang K. Mater Charact, 2005;54: 305 [7] Kim Y M, Lee H, Kim N J. Mater Sci Eng A, 2008;478: 361 [8] Pickering F B. Physical Metallurgy and Design of Steels. Essex: Applied Science Publishers Ltd., 1978: 64 [9] Dutta B, Valde′s E, Sellars C M. Acta Metall., 1992; 40 (4): 653 [10] Saito Y, Kimura M, Tanaska M, Sekine T, Tsubota K, Tanaka T. Kawasaki Steel Technical Report. 1984; 3: 12 [11] Aaronson H I, Enomoto M, Furuhara T, Reynolds W T. In: I. Tamura eds., Thermec 88, Int. Conf. on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals, Tokyo: Iron and Steel Institute of Japan. 1988; 1: 80 [12] Cotrina E, Iza-Mendia A, López , Gutiérrez I. Metall Mater Trans, 2004; A 35(1): 93 [13] Umemoto M, Guo Z H, Tamura I. Mater Sci Technol, 1987; 3: 249 [14] Honeycombe R W K. Steels Microstructures and Properties. London: Edward Arnold Pub. Ltd., 1980: 43 [15] Zhong Y, Xiao F R, Zhang J W. Acta Materialia, 2006; 54: 435 [16] Bhadeshia H K D H. Mater Sci Eng A, 1999; 273-275: 58 [17] Manabu T. Current Opinion in Solid State Mater Sci, 2004; 8: 213 [18] Liu Sh K, Yang L, Zhang J, Zhu D G. Acta Metall Sin, 1992; 28: A513 (刘世楷, 杨柳, 张筠, 朱德贵. 金属学报, 1992; 12: A513) [19] Eghbali B, Abdollah-zadeh A. Scr Mater, 2006; 54: 1205 [20] Gregg J M, Bhadeshia H K D H. Metall Mater Trans, 1994; A 25:1603 [21] Quidort D, Bréchet Y. Scr Mater, 2002; 47: 151 [22] Li J, Sun F Y. Acta Metall Sin, 1990; 26: A 396 (李箭, 孙福玉.金属学报, 1990; 26: A396) [23] Zhang B, Zhang H B. J Shanghai Jiaotong Uni, 2003; 37: 1522 (张斌, 张鸿冰.上海交通大学学报, 2003; 37: 1522) [24] Bai D Q, Yue S, Maccagno T M, Jonas J J. Metall Mater Trans, 1998; A 29: 989 [25] Chang L C. Mater Sci Eng A, 2004; 368: 175 [26] Quidort D, Bréchet Y. ISIJ Int, 2002; 42: 1010 [27] Zhao J Z, Mesplont C , De Cooman B C. ISIJ Int, 2001; 41: 492 [28] Xu Z Y, Liu S K. Bainite Transformation and Bainite. Beijing: Science Press, 1991; 6: 179 (徐祖耀,刘世楷.贝氏体相变与贝氏体. 北京: 科学出版社,1991; 6: 179) [29] Zhang W, Wu X C, Min Y A. Trans Mater Heat Treat, 2008; 29: 78 (张伟, 吴晓春, 闵永安. 材料热处理学报, 2008; 29: 78) [30] Liu Z C, Ren H P. Diffusion Phase Transformation of Supercooled Austenite. Beijing: Science Press, 2007; 12: 88 (刘宗昌, 任慧平. 过冷奥氏体扩散型相变. 北京: 科学出版社, 2007; 12: 88) [31] Cizek P, Wynne B P, Davies C H J, Muddle B C, Hodgson P D. Metall Mater Trans, 2002; A 33: 1331 [32] Hanzaki A Z, Pandi R, Hodgson P D, Yue S. Metall Mater Trans, 1993; A 24: 2657 [33] BAl D Q. S. Yue S, Maccagno T M, Jonas J J. ISIJ Int. 1998; 38: 371 [34] Bengochea R, Lo′Pez B, Gutierrez I. Metall Mater Trans, 1998; A 29: 417 [35] Fang H S. Bainite Transformation. Beijing: Science Press, 1999; 2: 59 (方鸿生. 贝氏体相变. 北京: 科学出版社, 1999; 2: 59) [36] Bramfitt B L, Speer J G.. Metall Mater Trans, 1990; A 21: 817 [37] Yang Z G, Fang H S. Current Opinion in Solid State and Materials Science, 2005; 9: 277 [38] Singh S B, Bhadeshia H K D H. Mater Sci Eng, 1998; A245: 72 [39] Hwang B, Kim Y G, Lee S. Metall Mater Trans, 2005; 36A: 2107 [40] Díaz-Fuentes M, Madariga I, Gutiérrez I. Mater Sci Forum, 1998; 284–286: 245 [41] Rodríguez-Ibabe J M. Mater Sci Forum, 1998; 284–286: 51 [42] Diza-Fuentes M, Iza-Mendia A, Gutierrez I. Metall Mater Trans A, 2003; 34A: 2505 [43] Gourgues A F, Flower H M, Lindley T C. Mater Sci Technol, 2000; 16: 26
[1] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[2] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[3] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[4] 张体明, 赵卫民, 蒋伟, 王永霖, 杨敏. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J]. 金属学报, 2019, 55(2): 258-266.
[5] 徐士新, 余伟, 李舒笳, 王坤, 孙齐松. 预变形温度对纳米贝氏体相变动力学及组织的影响[J]. 金属学报, 2018, 54(8): 1113-1121.
[6] 董利明,杨莉,戴军,张宇,王学林,尚成嘉. Mn、Ni、Mo含量对K65热煨弯管焊缝组织转变和低温韧性的影响[J]. 金属学报, 2017, 53(6): 657-668.
[7] 万红霞,宋东东,刘智勇,杜翠薇,李晓刚. 交流电对X80钢在近中性环境中腐蚀行为的影响[J]. 金属学报, 2017, 53(5): 575-582.
[8] 王丽娜,杨平,毛卫民. 高锰TRIP钢高速拉伸时的马氏体转变行为分析*[J]. 金属学报, 2016, 52(9): 1045-1052.
[9] 刘智勇,李宗书,湛小琳,皇甫文珠,杜翠薇,李晓刚. X80钢在鹰潭土壤模拟溶液中应力腐蚀裂纹扩展行为机理*[J]. 金属学报, 2016, 52(8): 965-972.
[10] 宋峰雨,李艳梅,王平,朱伏先. 热输入量对一种新型药芯焊丝熔敷金属组织及冲击韧性的影响*[J]. 金属学报, 2016, 52(7): 890-896.
[11] 王学林,董利明,杨玮玮,张宇,王学敏,尚成嘉. Mn/Ni/Mo配比对K65管线钢焊缝金属组织与力学性能的影响*[J]. 金属学报, 2016, 52(6): 649-660.
[12] 何岳,向嵩,石维,刘建敏,梁宇,陈朝轶. 冷拔珠光体钢的组织演变对其点蚀行为的影响*[J]. 金属学报, 2016, 52(12): 1536-1544.
[13] 吴书舟,易幼平,黄始全,李俊,李晨. 7050铝合金淬火敏感性研究和微观组织分析*[J]. 金属学报, 2016, 52(12): 1503-1509.
[14] 张体明,王勇,赵卫民,唐秀艳,杜天海,杨敏. 高压煤制气环境下X80钢及热影响区的氢渗透参数研究[J]. 金属学报, 2015, 51(9): 1101-1110.
[15] 刘玉,李焰,李强. 阴极极化对X80管线钢在模拟深海条件下氢脆敏感性的影响[J]. 金属学报, 2013, 49(9): 1089-1097.