Please wait a minute...
金属学报  2016, Vol. 52 Issue (7): 875-882    DOI: 10.11900/0412.1961.2015.00622
  论文 本期目录 | 过刊浏览 |
DD5单晶高温合金大间隙钎焊的组织演变与界面形成机制*
孙元,刘纪德,侯星宇,王广磊,杨金侠,金涛,周亦胄()
中国科学院金属研究所, 沈阳 110016
MICROSTRUCTURE EVOLUTION AND INTERFACIAL FORMATION MECHANISM OF WIDE GAP BRAZING OF DD5 SINGLE CRYSTAL SUPERALLOY
Yuan SUN,Jide LIU,Xingyu HOU,Guanglei WANG,Jinxia YANG,Tao JIN,Yizhou ZHOU()
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

孙元,刘纪德,侯星宇,王广磊,杨金侠,金涛,周亦胄. DD5单晶高温合金大间隙钎焊的组织演变与界面形成机制*[J]. 金属学报, 2016, 52(7): 875-882.
Yuan SUN, Jide LIU, Xingyu HOU, Guanglei WANG, Jinxia YANG, Tao JIN, Yizhou ZHOU. MICROSTRUCTURE EVOLUTION AND INTERFACIAL FORMATION MECHANISM OF WIDE GAP BRAZING OF DD5 SINGLE CRYSTAL SUPERALLOY[J]. Acta Metall Sin, 2016, 52(7): 875-882.

全文: PDF(1174 KB)   HTML
  
摘要: 

采用新型Ni-Co-Cr-W-B+DD99混合粉末钎料焊接DD5单晶高温合金, 分析钎料成分对接头显微组织演变和接头力学性能的影响, 探讨Ni-Co-Cr-W-B钎料/DD99合金粉的界面形成机制与接头形成机理. 结果表明, 在钎焊过程中, Ni-Co-Cr-W-B钎料/DD99合金粉的界面上首先形成了γ-Ni初生相, B偏析并析出细小颗粒状的M3B2 型硼化物, 在冷却过程中残余液相形成块状M3B2相、γ+γ′共晶相和γ-Ni+Ni3B+CrB共晶相. 提高混合粉末钎料中DD99合金粉的配比, 可有效抑制焊缝中的硼化物和低熔点共晶相的形成, 提高焊缝成分和组织均匀性. 当DD99合金粉的配比增加至70% (质量分数)时, B可均匀扩散至DD5母材和DD99合金粉中, 未观察到低熔点共晶相, 界面处脆性化合物相显著减少, 接头高温性能提高. 接头经过固溶处理和时效处理后, 在870 ℃的高温拉伸性能可提高至1010 MPa.

关键词 单晶高温合金大间隙钎焊混合粉末钎料微观组织力学性能    
Abstract

Ni-based single-crystal superalloy DD5 has excellent high temperature properties, which is the preferred raw material for aero-engine turbine blade in recent year. In this research, DD5 superalloy was brazed by different contents of Ni-Co-Cr-W-B+DD99 mixed powder filler alloy. The microstructure evolution and interfacial formation mechanism of DD5 superalloy brazing joint were analyzed by SEM and EPMA. The mechanical properties of joint after solid solution treatment and aging treatment were tested. The results show that γ-Ni primary phase formed firstly in the Ni-Co-Cr-W-B/DD99 interface during the brazing process, and then B element segregated and precipitated to fine granular M3B2 type boride. The residual liquid phase solidified and formed lastly to the M3B2 phase, γ+γ′ eutectic phase and γ-Ni+Ni3B+CrB eutectic phase during cooling. With increasing the ratio of DD99 in mixed powder filler alloy, the low melting point eutectic phase and borides in the joint decrease and the uniformity of composition and microstructure of joint improve. When the ratio of DD99 increased to 70% (mass fraction) in the mixed powder filler alloy, it can be observed that element of B diffused to DD99 additive powder which result ed in the decrease of low melting point eutectic phases and brittle compounds. The high temperature tensile properties of joint is 1010 MPa at 870 ℃.

Key wordssingle crystal superalloy    wide gap brazing    mixed powder filler alloy    microstructure    mechanical property
收稿日期: 2015-12-03     
基金资助:*国家自然科学基金项目51401210和51331005以及国家高技术研究发展计划项目2014AA041701资助
Alloy Ratio of mixed powder filler alloy
mass fraction / %
Solid-liquid transition temperature / ℃ Liquidus temperature
JSNi-1 100%Ni-Co-Cr-W-B 1050 1140
JSNi-2 50%Ni-Co-Cr-W-B+50%DD99 1050 1200
JSNi-3 30%Ni-Co-Cr-W-B+70%DD99 1050 1332
JSNi-4 20%Ni-Co-Cr-W-B+80%DD99 1050 1340
表1  混合粉末钎料的成分配比、固液转变温度和液相线温度
图1  JSNi-1钎料钎焊DD5单晶合金接头的SEM像
图2  JSNi-1钎料钎焊DD5单晶合金接头热处理后的SEM像
图3  采用不同配比的钎料合金在1260 ℃, 30 min钎焊DD5单晶合金的接头SEM像
图4  采用不同配比的钎料合金钎焊DD5单晶合金接头热处理后显微组织的SEM像
图5  钎料成分对接头抗拉强度的影响
图6  采用混合粉末钎料焊接DD5单晶高温合金的接头形成机理示意图
[1] Zhang X L, Zhou Y Z, Jin T, Sun X F.Acta Metall Sin, 2012; 48: 1229
[1] (张晓丽, 周亦胄, 金涛, 孙晓峰. 金属学报, 2012; 48: 1229)
[2] Tung S K, Lim L C, Lai M O.Scr Mater, 1996; 34: 763
[3] Huang X, Miglietti W.J Eng Gas Turb Power, 2012; 134: 010801
[4] Chen Y, Zhang K, Huang J, Hosseini S R E, Li Z G.Mater Des, 2016; 90: 586
[5] Zhang D X, Liu D S, Zhu X P.In: Sung W P, Chen R eds., 3rd Int Conf Frontiers of Manufacturing and Design Science, Hong Kong: Trans Tech Publications LTD, 2013: 64
[6] Liu T, Yan F, Liu S, Li R Y, Wang C M, Hu X Y.Opt Laser Technol, 2016; 80(2): 56
[7] Chelladurai A M, Gopal K A, Murugan S, Albert S K, Venugopal S, Jayakumar T.Sci Technol Weld Joining, 2015; 20: 578
[8] Ma T J, Yan M, Yang X W, Li W Y, Chao Y J.Mater Des, 2015; 85: 613
[9] Du S G, Wang X F, Gao M.Acta Metall Sin, 2015; 51: 951
[9] (杜随更, 王喜锋, 高漫. 金属学报, 2015; 51: 951)
[10] Cook G O, Sorensen C D.J Mater Sci, 2011; 46: 5305
[11] Philips N R, Levi C G, Evans A G.Metall Mater Trans, 2008; 39A: 142
[12] Pill J J, Kang C S.Mater Trans JIM, 1997; 38: 886
[13] Li W, Jin T, Sun X F, Guo Y, Guan H R, Hu Z Q.Scr Mater, 2003; 48: 1283
[14] Khakian M, Nategh S, Mirdamadi S.J Alloys Compd, 2015; 653: 386
[15] Liu A N, Zhai Q Y, Kang W J, Xu J F, Zhang J, Ruan C Y, Wang W.Hot Work Technol, 2014; 43(17): 29
[15] (刘安娜, 翟秋亚, 康文军, 徐锦锋, 张军, 阮成勇, 王炜. 热加工工艺, 2014; 43(17): 29)
[16] Huang X, Au P.J Eng Gas Turb Power, 2008; 130: 032101
[17] Henhoeffer T, Huang X, Yand S, Au P, Nagy D.Mater Sci Technol Lond, 2010; 26: 431
[18] Henhoeffer T, Huang X, Au P.J Eng Gas Turb Power, 2011; 133: 092101
[19] Guo J T.Material Science and Engineering for Superalloys (II). Beijing: Science Press, 2008: 452
[19] (郭建亭. 高温合金材料学(中). 北京: 科学出版社, 2008: 452)
[20] Zhuang H S, Lugscheider E. High Temperature Brazing.Beijing: National Defence Industry Press, 1989: 46
[20] (庄鸿寿, Lugscheider E.高温钎焊. 北京: 国防工业出版社, 1989: 46)
[21] Li X H, Zhong Q P, Cao C X.J Aeron Mater, 2003; 23(12): 10
[21] (李晓红, 钟群鹏, 曹春晓. 航空材料学报, 2003; 23(12): 10)
[22] Li X H, Xiong H P, Zhang X J.Joining Technologies of Advanced Aeronautical Materials. Beijing: National Defense Industry Press, 2012: 28
[22] (李晓红, 熊华平, 张学军. 先进航空材料焊接技术. 北京: 国防工业出版社, 2012: 28)
[23] Sheng N C, Liu J D, Jin T, Sun X F, Hu Z Q.Philos Mag, 2014; 94: 1219
[24] Sheng N C, Liu J D, Jin T, Sun X F, Hu Z Q.J Mater Sci Technol, 2015; 31: 129
[25] Sheng N C, Liu J D, Jin T, Sun X F, Hu Z Q.Metall Mater Trans, 2013; 44A: 1793
[26] Liu J D.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2007
[26] (刘纪德. 中国科学院金属研究所博士学位论文, 沈阳, 2007)
[27] Sun Y, Liu J D, Liu Z M, Yang J X, Li J G, Jin T, Sun X F.Acta Metall Sin, 2013; 49: 1581
[27] (孙元, 刘纪德, 刘忠明, 杨金侠, 李金国, 金涛, 孙晓峰. 金属学报, 2013; 49: 1581)
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[7] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[11] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[12] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[13] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[14] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[15] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.