Please wait a minute...
金属学报  2016, Vol. 52 Issue (7): 883-889    DOI: 10.11900/0412.1961.2015.00576
  论文 本期目录 | 过刊浏览 |
在AlCl3的辅助下从LiCl-KCl-AlCl3-Nd2O3熔盐中电解提取Nd*
薛云1,2,杨雪1,颜永得1(),张密林1,纪德彬1,李恩雨1,韩伟1
1 哈尔滨工业大学金属精密热加工国家级重点实验室, 哈尔滨 150001。
2 沈阳黎明航空发动机(集团)有限责任公司, 沈阳 110043。
ELECTROLYSIS EXTRACTION OF NEODYMIUM FROM LiCl-KCl-AlCl3-Nd2O3 MELTS WITHTHE ASSISTANCE OF AlCl3
Yun XUE1,2,Xue YANG1,Yongde YAN1(),Milin ZHANG1,Debin JI1,Enyu LI1,Wei HAN1
1 Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
2 Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001, China.
引用本文:

薛云,杨雪,颜永得,张密林,纪德彬,李恩雨,韩伟. 在AlCl3的辅助下从LiCl-KCl-AlCl3-Nd2O3熔盐中电解提取Nd*[J]. 金属学报, 2016, 52(7): 883-889.
Yun XUE, Xue YANG, Yongde YAN, Milin ZHANG, Debin JI, Enyu LI, Wei HAN. ELECTROLYSIS EXTRACTION OF NEODYMIUM FROM LiCl-KCl-AlCl3-Nd2O3 MELTS WITHTHE ASSISTANCE OF AlCl3[J]. Acta Metall Sin, 2016, 52(7): 883-889.

全文: PDF(684 KB)   HTML
摘要: 

研究了753 K时Nd在W和Al电极上LiCl-KCl-AlCl3-Nd2O3体系中的电化学行为, 同时研究了AlCl3对Nd2O3的氯化作用, 并直接以Nd2O3为原料, 在W和Al电极上电解提取Nd, 获得Al-Nd合金. 在W电极上, LiCl-KCl-Nd2O3体系中的循环伏安曲线中并未观察到Nd还原的信号. 加入AlCl3后, 观察到Nd在预先沉积Al基体上欠电位沉积形成3种Al-Nd金属间化合物的电化学信号. 在Al电极上LiCl-KCl-AlCl3-Nd2O3体系中观察到2种Al-Nd金属间化合物的形成信号. 测量结果表明, AlCl3能有效地氯化Nd2O3. 在-2 A下, W电极上恒电流电解提取Nd, 获得了Al-Nd合金, XRD分析结果表明, 形成的合金含Al2Nd相. 而在活性Al阴极上电解提取Nd, 获得的Al-Nd合金含Al3Nd相.

关键词 LiCl-KCl熔盐电解提取镧系元素Al-Nd合金    
Abstract

Based on the understanding of oxide spent fuel reprocessing, the AlCl3 was selected as chlorinating agent to directly chloridize spent fuel. At the same time, Nd could be extracted by co-deposition with the intro duction of Al3+. This process could be realized by the purpose of electrochemical extraction. The electrochemical behavior of Nd(III) ions was investigated in LiCl-KCl-AlCl3-Nd2O3 melt on W and Al electrodes at 753 K. Simultaneously, the chlorination effects of Nd2O3 by AlCl3 was also studied. Using Nd2O3 as raw material, Al-Nd alloy was obtained via electrolytic extraction Nd on W and Al electrodes. On the W electrode, no reduction signal of Nd(III) was detected in the cyclic voltammogram of LiCl-KCl-Nd2O3 melt. After the addition of AlCl3, three electrochemical signals for three Al-Nd intermetallic compounds from the underpotential deposition of Nd on pre-deposited Al substrate were observed. On the Al electrode, two formation signals of Al-Nd intermetallic compounds were observed in the LiCl-KCl-AlCl3-Nd2O3 melt. The results show that AlCl3 can effectively chloridize Nd2O3. Nd was extracted by galvanostatia electrolysis on the W electrodes under -2 A, and Al-Nd alloy was obtained. The XRD results suggest that Al2Nd phase is formed. However, when the electrolytic extraction of Nd was carried out on active Al electrode, Al3Nd phase was formed in Al-Nd alloy.

Key wordsLiCl-KCl melt    electrolytic extraction    lanthanide element    Al-Nd alloy
收稿日期: 2015-11-11     
基金资助:* 国家自然科学基金项目91226201, 91326113和51574097, 黑龙江省科学基金LC2016018, 黑龙江博士后科研启动及特别资助科学基金项目LBH-Q15019, LBH-Q15020和LBH-TZ0411, 以及黑龙江省普通高等学校和哈尔滨工程大学青年学术骨干支持计划项目1253G016和HEUCFQ1415资助
图1  W电极上LiCl-KCl-Nd2O3熔盐体系中添加AlCl3前后得到的循环伏安曲线
图2  LiCl-KCl-AlCl3-Nd2O3熔盐体系在不同的换向电势下得到的循环伏安曲线
图3  W电极上LiCl-KCl-Nd2O3-AlCl3熔盐体系中得到的方波伏安曲线
图4  W电极上LiCl-KCl-AlCl3-Nd2O3熔盐体系-2.4 V下恒电位电解20 s后得到的开路计时电位曲线
图5  在Al电极上LiCl-KCl-AlCl3熔盐体系中加入Nd2O3得到的循环伏安曲线
图6  Al电极上LiCl-KCl-Nd2O3-AlCl3熔盐体系中得到的方波伏安曲线
图7  在Al电极上, 753 K下LiCl-KCl-Nd2O3-AlCl3熔盐体系中-2.2 V恒电位电解10 s得到的开路计时电位曲线
图8  在Al电极上, LiCl-KCl-AlCl3 (6%)-Nd2O3 (3%)熔盐体系中恒电流电解得到的样品的XRD谱
图9  在W电极上, LiCl-KCl-AlCl3 (15%)-Nd2O3 (1.5%)熔盐体系中恒流电解得到的样品的XRD谱
图10  973 K时LiCl-KCl-AlCl3 (15%)-Nd2O3 (1.5%)熔盐体系中得到的Al-Li-Nd合金的SEM像及元素面扫描图
[1] Gu Z M.J Nucl Radiochem, 2006; 28: 1
[1] (顾忠茂. 核化学与放射化学, 2006; 28: 1)
[2] Zhou P D.Nucl Sci Eng, 2002; 22: 261
[2] (周培德. 核科学与工程, 2002; 22: 261)
[3] Smolenski V, Novoselova A, Bovet A, Osipenko A, Kormilitsyn M.J Nucl Mater, 2009; 385: 184
[4] Castrillejo Y, Bermejo M R, Barrado E, Barrado E, Martinez A M.Electrochim Acta, 2006; 51: 1941
[5] Castrillejo Y, Bermejo M R, Barrado A I, Rardo R, Barrado E, Martinez A M.Electrochim Acta, 2005; 50: 2047
[6] Bermejo M R, Gómez J, Medina J, Martinez A M, Castrillejo Y.J Electroanal Chem, 2006; 588: 253
[7] Du S L, Su M Z.Acta Metall Sin, 1991; 27: 111
[7] (杜森林, 苏明忠. 金属学报, 1991; 27: 111)
[8] Nourry C, Massot L, Chamelot P, Taxil P.J Appl Electrochem, 2009; 39: 2359
[9] Taxil P, Massot L, Nourry C, Gibilaro M, Chamelot P, Cassayre L.J Fluorine Chem, 2009; 130: 94
[10] Xue Y, Zhou Z P, Yan Y D, Zhang M L, Li X, Ji D B, Han W, Zhang M.Acta Phys Chim Sin, 2014; 30: 1674
[10] (薛云, 周志萍, 颜永得, 张密林, 李星, 纪德彬, 韩伟, 张萌. 物理化学学报, 2014; 30: 1674)
[11] Xue Y, Zhou Z P, Yan Y D, Zhang M L, Li X, Ji D B, Tang H, Zhang Z J.RSC Adv, 2015; 5: 23114
[12] Li X, Yan Y D, Zhang M L, Xue Y, Tang H, Zhou Z P, Yang X N, Zhang Z J.J Electrochem Soc, 2014; 161: D248
[13] Zhang M L, Yang Y S, Han W, Li M, Ye K, Sun Y, Yan Y D.J Solid State Chem, 2013; 17: 2671
[14] Tang H, Yan Y D, Zhang M L, Li X, Han W, Xue Y, Zhang Z J, He H.Electrochim Acta, 2013; 107: 209
[15] Papatheodorou G N, Kucera G H.Inorg Chem, 1979; 18: 385
[16] Xue Y, Wang Q, Yan Y D, Chen L, Zhang M L, Zhang Z J.Energy Procedia, 2013; 39: 474
[17] Yan Y D, Tang H, Zhang M L, Xue Y, Han W, Cao D X, Zhang Z Z.Electrochim Acta, 2012; 59: 531
[18] Wang L, Liu Y L, Liu K, Tang S L, Yuan L Y, Su L L, Chai Z F, Shi W Q.Electrochim Acta, 2014; 147: 385
[19] Fukasawa K, Uehara A, Nagai T, Fujii T, Yamana H.J Nucl Mater, 2011; 414: 265
[20] De Cordoba G, Laplace A, Conocar O, Lacquement J, Caravaca C.Electrochim Acta, 2008; 54: 280
[21] Tang H, Pesic B.J Nucl Mater, 2015; 458: 37
[22] Yan Y D, Xu Y L, Zhang M L, Xue Y, Han W, Hang Y, Chen Q, Zhang Z J.J Nucl Mater, 2013; 433: 152
[23] Li X, Yan Y D, Zhang M L, Xue Y, Tang H, Zhou Z P, Yang X N, Zhang Z J.J Radioanal Nucl Chem, 2014; 299: 657
[24] Yan Y D, Yang X N, Zhang M L, Li X, Wang L, Xue Y, Zhang Z J.Acta Metall Sin, 2014; 50: 989
[24] (颜永得, 杨晓南, 张密林, 李星, 王丽, 薛云, 张志俭. 金属学报, 2014; 50: 989)
[25] Massalski T B, Murray J L, Benett L H, Baker H.Binary Alloy Phase Diagrams. Vol.1, Metals Park, Ohio: The Materials Information Company, 1986: 293
No related articles found!