Please wait a minute...
金属学报  2016, Vol. 52 Issue (6): 755-760    DOI: 10.11900/0412.1961.2015.00501
  论文 本期目录 | 过刊浏览 |
Ge30Se70硫系玻璃的特征温度和性能*
贾婷婷,坚增运,许军锋,朱满,常芳娥
西安工业大学材料与化工学院, 西安 710021
CHARACTERISTIC TEMPERATURE AND PERFOR-MANCE OF THE Ge30Se70 CHALCOGENIDE GLASS
Tingting JIA,Zengyun JIAN,Junfeng XU,Man ZHU,Fang'e CHANG
School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
引用本文:

贾婷婷,坚增运,许军锋,朱满,常芳娥. Ge30Se70硫系玻璃的特征温度和性能*[J]. 金属学报, 2016, 52(6): 755-760.
Tingting JIA, Zengyun JIAN, Junfeng XU, Man ZHU, Fang'e CHANG. CHARACTERISTIC TEMPERATURE AND PERFOR-MANCE OF THE Ge30Se70 CHALCOGENIDE GLASS[J]. Acta Metall Sin, 2016, 52(6): 755-760.

全文: PDF(635 KB)   HTML
  
摘要: 

通过熔融-淬冷的方法制备Ge30Se70硫系玻璃块状试样, 利用XRD判定所制试样的非晶态程度, 采用DSC热分析方法测定该试样的玻璃化转变温度Tg和起始析晶温度Tx, 通过VFT方程拟合法确定试样的动力学理想玻璃化转变温度T0, 采取分段加热法分析Ge30Se70 玻璃试样和同成分晶体试样在设定温度范围内的比热容. 通过计算出的比热容拟合出Ge30Se70玻璃和晶体的比热容方程, 即cp,l=0.0002T+0.3337和cp,c=0.00006T+0.4594. Ge30Se70试样的TgT0分别为590和581 K, 且Tg随着升温速率R的增大而增加. 在低于玻璃转化温度前时, Ge30Se70玻璃试样的平均比热容约为11.8 J/(molK), 红外透过率约为60%, 红外性能良好. 获得Ge30Se70玻璃的约化转变温度Trg介于0.5~0.667之间, 形核率极低, 表明Ge30Se70玻璃的成玻能力良好.

关键词 硫系玻璃分段加热法玻璃转变温度比热容    
Abstract

Chalcogenide glass is an ideal infrared wave-transparent material, and it has the advantages of low cost, high production efficiency, high glass transition temperature and good mechanical properties, etc.. It is a candidate material for thermal imaging system. The block sample of Ge30Se70 chalcogenide glass was prepared by the method of the melt-quenched. In this work, XRD was used to determine whether the sample was amorphous material. With the DSC thermal analysis method, the glass transition temperature Tg and the initial crystallization temperature Tx of the sample were measured. The dynamics ideal glass transition temperature T0 of the specimen was fitted by VFT equation. The method of segmented step heating is used to analyze the calorific value for the glass and congruent crystal of Ge30Se70 sample in setting temperature range. Then from the calculated calorific values of the glass and crystalline samples, the specific heat capacity relationships were obtained, i.e., cp,l=0.0002T+0.3337 and cp,c=0.00006T+0.4594. The results show that Tg and T0 of Ge30Se70 sample is 590 and 581 K, respectively. And Tg will increase with the increasing of the heating rate R. The average value of the specific heat capacity of the Ge30Se70 glass sample is about 11.8 J/(molK) below the glass transition temperature. The infrared transmittance is about 60% indicating that the infrared performance is good. The glass reduced temperature Trg of Ge30Se70 sample is between 0.5~0.667, and the nucleation rate is very low, which indicates that the glass forming ability of Ge30Se70 glass is good.

Key wordschalcogenide glass    segmented heating method    glass transition temperature    specific heat capacity
收稿日期: 2015-09-25     
基金资助:* 国家重点基础研究发展计划项目2013CB632904, 国家自然科学基金项目51371133, 51171136, 51301125和51401156, 陕西省自然科学基金项目2012JM6010和2014JM6225以及陕西省教育厅重点实验室项目13JS041资助
图1  Ge30Se70玻璃试样的XRD谱和宏观形貌及Ge30Se70晶体试样的XRD谱
图2  Ge30Se70玻璃试样的红外透过光谱
图3  不同升温速率下Ge30Se70玻璃试样的DSC曲线
图4  Ge30Se70玻璃的VFT拟合曲线
图5  空坩埚、蓝宝石和Ge30Se70试样的DSC曲线
R / (Ks-1) Tg / K Tx / K Tp / K
0.083 587 681 691
0.167 590 691 707
0.333 593 701 722
0.667 603 712 746
表1  Ge30Se70玻璃试样在不同升温速率下的特征温度
图6  逐步升温等温基线校正测定比热容
图7  比热容随温度的变化
[1] Wei W H.PhD Dissertation, Chongqing University, 2014
[1] (魏文猴. 重庆大学博士学位论文, 2014)
[2] Song B A, Dai S X, Xu T F, Nie Q H, Shen X, Wang X S, Lin C G.Acta Phys Sin, 2011; 60: 084217-1
[2] (宋宝安, 戴世勋, 徐铁峰, 聂秋华, 沈祥, 王训四, 林常规. 物理学报, 2011; 60: 084217-1)
[3] Jian Z Y, Zheng C, Chang F E, Zhou J, Gao Y S, Lv S Y.J Xi'an Technol Univ, 2009; 29: 52
[3] (坚增运, 郑超, 常芳娥, 周晶, 高玉社, 吕士勇. 西安工业大学学报, 2009; 29: 52)
[4] Xue J Q, Xu M, Gong Y Q, Zhao X J.Optoelectron Technol Inf, 2003; 16(4): 28
[4] (薛建强, 徐曼, 龚跃球, 赵修建. 光电子技术与信息, 2003; 16(4): 28)
[5] Zhang X H.Laser Focus World, 2002; 38: 71
[6] Zhang X H, Guimond Y, Bellec Y.J Non-Cryst Solids, 2003; 326: 519
[7] Yin D M, Dai S X, Wang X S, Xu Y S, Zhang P Q, Lin C G, Shen X.Laser Optoelectron Progr, 2013; 50(2): 92
[7] (尹冬梅, 戴世勋, 王训四, 许银生, 张培晴, 林常规, 沈祥. 激光与光电子学进展, 2013; 50(2): 92)
[8] Burgess T, Ferry M.Mater Today, 2009; 12: 24
[9] Inoue A, Shen B L, Koshiba H, Kato H, Yavari A R.Acta Mater, 2004; 52: 1631
[10] Orava J, Greer A L, Gholipour B, Hewak D W, Smith C E.Nat Mater, 2012; 11: 279
[11] Giulia D F, Livio B.Acta Mater, 2013; 61: 2260
[12] Mukherjee S, Schroers J, Johnson W L, Rhim W K. Phys Rev Lett, 2005; 94: 245501
[13] Angell C A.Science, 1995; 267: 1924
[14] Fontana G D, Battezzati L.Acta Mater, 2013; 61: 2260
[15] Tournier R F. Intermetallics, 2012; 30: 104
[16] Turnbull D.Contemp Phys, 1969; 10: 473
[17] Mukherjee S, Schroers J, Johnson W L, Rhim W K.Phys Rev Lett, 2005; 94: 245501
[18] Stillinger F H.J Chem phys, 1988; 88: 7818
[19] Kauzmann W.Chem Rev, 1948; 43: 219
[20] Mei Q S, Lu K.Prog Mater Sci, 2007; 52: 1175
[21] Chen G R, Cheng J J.Bull Chin Ceram Soc, 1997; (4): 63
[21] (陈国荣, 程继健. 硅酸盐通报, 1997; (4): 63)
[22] Zallen R.The Physics of Amorphous Solids. New York: A Wiley-Interscience Publication, 1983: 53
[23] Jiang Q, Xu X Y, Zhao M.Acta Metall Sin, 1997; 33: 763
[23] (蒋青, 徐晓亚, 赵明. 金属学报, 1997; 33: 763)
[24] Turnbull D.Contemp Phys, 1969; 10: 473
[25] Inoue A.Acta Mater, 2000; 48: 279
[26] Vogel H.Physikalische Zeitschrift, 1921; 22: 645
[27] Fulcher G S.J Am Ceram Soc, 1925; 8: 339
[28] Tammann G, Hesse G Z.Anorg Allg Chem, 1926; 156: 245
[29] Flynn J H.Thermochim Acta, 1993; 217: 129
[30] Fan G J, L?ffler J F, Wunderlich R K, Fecht H J.Acta Mater, 2004; 52: 667
[31] Jia R, Bian X F, Wang Y Y.Chin Sci Bull, 2011; 56: 3912
[1] 李姣姣,坚增运,朱满,许军锋,常芳娥,相敏. GexSe90-xSb10硫系玻璃的热力学特性和动力学脆性研究*[J]. 金属学报, 2015, 51(11): 1384-1390.
[2] 蒋青;徐晓亚;赵明. Vogel—Fulcher定律与玻璃转变温度的关系[J]. 金属学报, 1997, 33(7): 763-768.
[3] 沈涛;王景唐. 过冷液态金属热力学性质的变分计算[J]. 金属学报, 1990, 26(3): 119-125.