Please wait a minute...
金属学报  2016, Vol. 52 Issue (2): 177-183    DOI: 10.11900/0412.1961.2015.00228
  论文 本期目录 | 过刊浏览 |
混沌对流下的半固态A356铝合金初生相形貌演变研究*
刘政1(),张嘉艺2,罗浩林2,邓可月1
1 江西理工大学机电工程学院, 赣州 341000
2 江西理工大学材料科学与工程学院, 赣州 341000
RESEARCH ON MORPHOLOGY EVOLUTION OF PRIMARY PHASE IN SEMISOLID A356 ALLOY UNDER CHAOTIC ADVECTION
Zheng LIU1(),Jiayi ZHANG2,Haolin LUO2,Keyue DENG1
1 School of Mechanical and Electronic Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
2 School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
引用本文:

刘政,张嘉艺,罗浩林,邓可月. 混沌对流下的半固态A356铝合金初生相形貌演变研究*[J]. 金属学报, 2016, 52(2): 177-183.
Zheng LIU, Jiayi ZHANG, Haolin LUO, Keyue DENG. RESEARCH ON MORPHOLOGY EVOLUTION OF PRIMARY PHASE IN SEMISOLID A356 ALLOY UNDER CHAOTIC ADVECTION[J]. Acta Metall Sin, 2016, 52(2): 177-183.

全文: PDF(3902 KB)   HTML
摘要: 

研究了半固态A356铝合金熔体中混沌对流的表征, 及电磁场诱发的混沌对流对半固态A356铝合金熔体中初生相形貌演变的影响. 通过Fluent软件研究了电磁场作用下A356铝合金熔液中微粒的流动轨迹, 计算了这些流动轨迹的Kolmogorov熵和分形维数, 证明了施加适当的电流频率能在合金熔体中产生混沌运动. 结合实验研究, 对不同电流频率及工艺参数的实验结果进行对比. 研究结果表明, A356铝合金熔体在650 ℃浇注, 电流频率为30 Hz的电磁场中搅拌15 s, 并在590 ℃保温10 min, 此时凝固系统的Kolmogorov熵为6829.5 nat/s, 分形维数为2.2439, 初生相的平均等积圆直径为59.86 μm, 平均形状因子为0.71, 此时晶粒最圆整细小, 组织形貌最佳.

关键词 半固态A356铝合金混沌对流Kolmogorov熵分形维数电磁搅拌    
Abstract

Chaotic advection could be strengthened mix, mass transfer and heat transfer in the viscous fluid, the melt flow forming was affected by electromagnetic field in the metal solidification process, so were the macro and microstructure of materials. So it was necessary to study chaotic characteristics of semisolid Al alloy in the electromagnetic field. The characterization of chaotic convention and morphology of primary phase were mainly researched in semisolid A356 alloy under the electromagnetic field. The trajectories of the particle in semisolid A356 alloy melt was simulated by the computational fluid dynamics software Fluent, the Kolmogorov entropy and fractal dimension of the flow trajectories of semisolid A356 alloy melt were judged and analyzed. The results showed that chaotic advection may happen in semisolid alloy melt under electromagnetic field. Combined with experiment, the results of process parameters and different current frequencies were compared. The results showed that the primary phase with 59.86 μm in average equal-area circle diameter, 0.71 in average shape factor, 6829.5 nat/s of Kolmogorov entropy and 2.2439 of fractal dimension can be obtained in semisolid A356 alloy with pouring 650 ℃, stirring for 15 s at 30 Hz, and holding at 590 ℃ for 10 min. Meanwhile, the morphology of primary phase can be observed with the best parameters.

Key wordssemisolid A356 alloy    chaotic advection    Kolmogorov entropy    fractal dimension    electromagnetic stirring
收稿日期: 2015-04-20     
基金资助:*国家自然科学基金项目51144009和51361012, 江西省自然科学基金项目20142bab206012以及江西省教育厅科技项目GJJ14407资助
图1  微粒在未施加电磁场和施加不同频率电磁场下的运动轨迹
图2  不同频率下凝固系统的Kolmogorov熵和分形维数变化趋势图
图3  未经电磁搅拌和不同电磁搅拌频率下半固态A356铝合金初生相形貌
图4  不同电磁搅拌频率下初生相的平均等积圆直径和平均形状因子
[1] Lin X, Tong L L, Zhao L N, Wang L N, Wang M, Huang W D.Trans Nonferrous Met Soc China, 2010; 20: 826
[2] Zhao L N, Lin X, Huang W D.Acta Metall Sin, 2011; 47: 403
[2] (赵力宁, 林鑫, 黄卫东. 金属学报, 2011; 47: 403)
[3] Xu J F, Wei B B.Acta Phys Sin, 2004; 53: 1909
[3] (徐锦峰, 魏炳波. 物理学报, 2004; 53: 1909)
[4] Nikrityuk P A, Eckert K, Grundmann R.Int J Heat Mass Trans, 2006; 49: 1501
[5] Nikrityuk P A, Ungarish M, Eckert K, Grundmann R.Phys Fluids, 2005; 17: 101
[6] Pan Y, Zhang C Y.Acta Metall Sin, 2001; 37: 1035
[6] (潘冶, 张春燕. 金属学报, 2001; 37: 1035)
[7] Campanella T, Charbon C, Rappaz M.Metall Mater Trans, 2004; 35A: 3201
[8] Zhao J Z, Li H L, Zhao L.Acta Metall Sin, 2009; 45: 1435
[8] (赵九洲, 李海丽, 赵雷. 金属学报, 2009; 45: 1435)
[9] Gao S Y, Le Q C, Zhang Z Q, Cui J Z.Bull Mater Sci, 2012; 35: 651
[10] Eckert S, Nikrityuk P A, Willers B, Räbiger D, Shevchenko N, Neumann H H.Eur Phys J Spec Topics, 2013; 220: 123
[11] Poole G M, Heyen M, Nastac L, El-Kaddah N.Metall Mater Trans, 2014; 45B: 1834
[12] Aref H.J Fluid Mech, 1984; 143: 21
[13] Arratic P E, Muzzio F J.Ind End Chem Res, 2004; 43: 6557
[14] Bresler L, Shinbrot T, Metcalfe G, Ottino J M.Chem Eng Sci, 1997; 52: 1623
[15] Lu G M, Zhao D Z, Wang P, Cui J Z.J Northeastern Univ (Nat Sci), 2007; 28: 353
[15] (路贵民, 赵大志, 王平, 崔建忠. 东北大学学报(自然科学版), 2007; 28: 353)
[16] Tao W Y, Zhao S D, Lin W J.J Mech Eng, 2012; 48(14): 50
[16] (陶文毓, 赵升吨, 林文捷. 机械工程学报, 2012; 48(14): 50)
[17] Sun K H, He S B, He Y, Yin L Z.Acta Phys Sin, 2013; 62: 1
[17] (孙克辉, 贺少波, 何毅, 尹林子. 物理学报, 2013; 62: 1)
[18] Zhu Y Z, Yi S H, Kong X P.Acta Phys Sin, 2015; 64: 701
[18] (朱杨柱, 易仕和, 孔小平. 物理学报, 2015; 64: 701)
[19] Zheng G B, Jin N D.Acta Phys Sin, 2009; 58: 4485
[19] (郑桂波, 金宁德. 物理学报, 2009; 58: 4485)
[20] Schouten J C, Takens F, van den Bleek C M.Phys Rev, 1994; 49E: 126
[21] Wang Z F, Wang Z H.Chin J Comput, 2012; 35: 364
[21] (王中锋, 王志海. 计算机学报, 2012; 35: 364)
[22] Falconer K J.Math Proc Camb Phil Soc, 1988; 103: 339
[23] Li S G.Fractals. Beijing: Higher Education Press, 2004: 55
[23] (李水根. 分形. 北京:高等教育出版社, 2004: 55)
[24] Liu Z H, Sun R X, Wang Y D.Ciesc J, 2014; 65: 3340
[25] Fan Z, Chen J Y.Mater Sci Technol, 2002; 18: 258
[26] Liu F F, Yang C J, Su Q, Wang D H, Zhang Y Z.J Mech Eng, 2010; 46(19): 24
[27] Yang X W, Zhu J C, He D.Trans Nonferrous Met Soc China, 2013; 23: 1442
[1] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[2] 曹江海, 侯自兵, 郭中傲, 郭东伟, 唐萍. 过热度对轴承钢凝固组织整体形貌特征及渗透率的影响[J]. 金属学报, 2021, 57(5): 586-594.
[3] 张林, 郭晓, 高建文, 邓安元, 王恩刚. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响[J]. 金属学报, 2020, 56(9): 1239-1246.
[4] 任忠鸣,雷作胜,李传军,玄伟东,钟云波,李喜. 电磁冶金技术研究新进展[J]. 金属学报, 2020, 56(4): 583-600.
[5] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[6] 侯自兵,曹江海,常毅,王伟,陈晗. 基于分形维数的模具钢电渣重熔铸坯碳偏析形貌特征研究[J]. 金属学报, 2017, 53(7): 769-777.
[7] 刘政,徐丽娜,余昭福,陈杨政. 电磁场作用下半固态A356-La铝合金初生相形貌及分形维数的研究*[J]. 金属学报, 2016, 52(6): 698-706.
[8] 刘政, 刘小梅, 朱涛, 谌庆春. 低频电磁搅拌对半固态铝合金中稀土分布的影响[J]. 金属学报, 2015, 51(3): 272-280.
[9] 苏志坚 李德伟 孙立为 丸川雄净 赫冀成. 圆坯连铸电磁旋流水口的数值模拟[J]. 金属学报, 2010, 46(4): 479-486.
[10] 刘政 毛卫民 赵振铎. 新工艺制备半固态A356铝合金浆料[J]. 金属学报, 2009, 45(4): 507-512.
[11] 罗 键 王向杰 赵国际 王家序. CO2+电磁搅拌复合堆焊梯度功能层的微观组织及性能研究[J]. 金属学报, 2009, 45(12): 1487-1492.
[12] 吴小军 程文 乔生儒 邹武 张鹏 张晓虎. 树脂浸渍炭化过程中C/C复合材料孔隙演化[J]. 金属学报, 2009, 45(11): 1402-1408.
[13] 任兵芝; 朱苗勇; 王宏丹; 陈永 . 大方坯连铸结晶器电磁搅拌三维电磁场与流场的数值模拟[J]. 金属学报, 2008, 44(4): 507-512 .
[14] 贾洪海; 于湛; 雷作胜; 邓康; 陈家昶; 华文杰; 任忠鸣 . 旋流水口对小方坯连铸结晶器流场影响的水模拟研究[J]. 金属学报, 2008, 44(3): 375-380 .
[15] 于海岐 朱苗勇. 圆坯结晶器电磁搅拌过程三维流场与温度场数值模拟[J]. 金属学报, 2008, 44(12): 1465-1473.