Please wait a minute...
金属学报  2015, Vol. 51 Issue (12): 1538-1544    DOI: 10.11900/0412.1961.2015.00255
  本期目录 | 过刊浏览 |
J75抗氢合金中B的作用机制研究*
梁浩1,赵明久2(),陈胜虎2,徐勇1,王永利2,戎利建2
1 中国工程物理研究院总体工程研究所, 绵阳 621900
2 中国科学院金属研究所中国科学院核用材料与安全评价重点实验室, 沈阳 110016
MECHANISM OF B IN HYDROGEN-RESISTANCE J75 ALLOY
Hao LIANG1,Mingjiu ZHAO2(),Shenghu CHEN2,Yong XU1,Yongli WANG2,Lijian RONG2
1 Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621900
2 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

梁浩,赵明久,陈胜虎,徐勇,王永利,戎利建. J75抗氢合金中B的作用机制研究*[J]. 金属学报, 2015, 51(12): 1538-1544.
Hao LIANG, Mingjiu ZHAO, Shenghu CHEN, Yong XU, Yongli WANG, Lijian RONG. MECHANISM OF B IN HYDROGEN-RESISTANCE J75 ALLOY[J]. Acta Metall Sin, 2015, 51(12): 1538-1544.

全文: PDF(1459 KB)   HTML
摘要: 

采用OM, SEM, TEM, EPMA和二次离子质谱(SIMS)等手段, 研究了B对J75抗氢合金晶界η相析出的抑制作用机制, 采用饱和热充氢、三维原子探针(3DAP)技术和氢渗透实验方法, 研究了B对合金抗氢性能的影响机制. 结果表明, 不含B合金中存在Ti的晶界偏聚, 导致晶界η相在时效过程中析出; 含B合金中, 由于B抑制了Ti的晶界偏聚, 使η相难以形核长大, 从而抑制了晶界η相的析出. B和H原子存在位置竞争关系, B降低合金的氢扩散系数, 阻碍H原子的扩散和迁移, 减少晶界偏聚H原子数量, 抑制氢致裂纹形成.

关键词 J75合金B抗氢性能η    
Abstract

With the development of hydrogen economy, the demand of structural materials with high strength suitable for service in hydrogen or hydrogen-bearing environments such as storage of hydrogen gas was incremental. An optional structural materials is J75 alloy, which is mainly strengthened by an ordered fcc γ' phase, Ni3(Al, Ti), coherent with the austenite matrix. Investigation on J75 alloy indicated that the commercial alloy free of B would lose about half its ductility when charged with hydrogen, accompanied by a change of fracture mode from ductile rupture to brittle-appearing intergranular fracture. Otherwise, an improvement in ductility and hydrogen resistant performance was observed in the J75 alloy with trace B, however, its role in the alloy is unclear. So, in present work, mechanism of B in the J75 hydrogen-resistant alloy was investigated by means of OM, SEM, TEM, EPMA, 3DAP, SIMS, hydrogen penetration, thermal hydrogen charging experiments and tensile tests. It was found that a lot of Ti segregated at grain boundaries (GBs) in the alloy free of B, resulted in abundant precipitation of cellular η phases. However, the cellular η phase was not observed in the alloy with B, and it could be attributed to the segregation of B atoms at GBs and inhibited the segregation of Ti. A lower hydrogen diffusion coefficient was observed in the alloy with B than that in the alloy free of B by hydrogen permeation, indicating that diffusion velocity of H atoms in the alloy had been decreased by the addition of B. Moreover, segregation of B at GBs could not only inhibit the precipitation of η phases but also decrease the number of H atoms there, which would improve the hydrogen-resistant performance of the alloy.

Key wordsJ75 alloy    B    hydrogen-resistant performance    η phase
    
基金资助:*国家自然科学基金委员会-中国工程物理研究院NSAF联合基金项目U1230118 和国家自然科学基金项目51171178 资助
Alloy C Ni Cr Si Mo Ti Al P S B Fe
0B 0.012 29.8 15.08 0.26 1.34 2.31 0.33 0.002 0.003 Bal.
20B 0.011 30.1 14.93 0.24 1.33 2.04 0.28 0.002 0.003 0.0019 Bal.
表1  不含和含B的Fe-Ni基奥氏体J75合金的化学成分
图1  0B合金的OM像、晶界处η相的TEM明场像和HRTEM像
图2  20B合金的OM像、晶界碳化物的TEM明场像和SAED谱
图3  0B和20B合金充氢前后的拉伸断口形貌
Alloy sb / MPa s0.2 / MPa d / % y / %
0B 1142 742 26.0 40.0
20B 1136 739 28.4 64.5
表2  0B和20B合金的室温拉伸性能
图4  0B合金中析出相η和γ′相的SEM像
Alloy sb / MPa s0.2 / MPa d / % yH / % yL / %
0B 1134 757 20.4 20.6 48.3
20B 1158 785 24.0 41.5 35.7
表3  0B和20B合金充氢后的室温拉伸性能和氢致塑性损减
图5  0B和20B合金中元素分布的EPMA分析
图6  20B合金中B原子分布的SIMS像
图7  20B合金充氢后H和B原子分布的3DAP像
[1] Li X Y,Li Y Y. Hydrogen Damage of Austenitic Alloy. Beijing: Science Press, 2003: 1
[1] (李秀艳,李依依. 奥氏体合金的氢损伤. 北京: 科学出版社, 2003: 1)
[2] Zhang J, Li X Y, Zhao M J, Rong L J. Acta Metall Sin, 2008; 44: 1095
[2] (张 建, 李秀艳, 赵明久, 戎利建. 金属学报, 2008; 44: 1095)
[3] Li X Y, Rong L J, Li Y Y. Acta Metall Sin, 2005; 41: 1155
[3] (李秀艳, 戎利建, 李依依. 金属学报, 2005; 41: 1155)
[4] Li X Y, Zhang J, Rong L J, Li Y Y. Mater Sci Eng, 2008; A488: 547
[5] Zhang J, Li X Y, Rong L J, Zheng Y N, Zhu S Y. Acta Metall Sin, 2006; 42: 469
[5] (张 建, 李秀艳, 戎利建, 郑永男, 朱升云. 金属学报, 2006; 42: 469)
[6] Chen S H, Zhao M J, Rong L J. Acta Metall Sin, 2012; 48: 1335
[6] (陈胜虎, 赵明久, 戎利建. 金属学报, 2012; 48: 1335)
[7] Brooks J A, Thompson A W. Metall Trans, 1993; 24A: 1983
[8] Zhao M J, Rong L J. Acta Metall Sin, 2009; 45: 119
[8] (赵明久, 戎利建. 金属学报, 2009; 45: 119)
[9] Zhao M J, Guo Z F, Liang H, Rong L J. Mater Sci Eng, 2010; A527: 5844
[10] Yao X X. Mater Sci Eng, 1999; A271: 353
[11] Sourmail T, Okuda T, Taylor J E. Scr Mater, 2004; 50: 1271
[12] Fujwara M, Uchida H, Ohta S. J Mater Sci Lett, 1994; 13: 557
[13] Kennedy R L, Cao W D, Thomas W M. Adv Mater Process, 1996; 149: 33
[14] Sellamuthu R, Giamei A F. Metall Trans, 1986; 17A: 419
[15] Wills V A, Mccartney D G. Mater Sci Eng, 1991; A145: 223
[16] Franzoni U, Marchetti F, Sturless S. Scr Metall, 1985; 19: 511
[17] Shulga A V. J Alloys Compd, 2007; 486: 155
[18] Liu W Q, Liu Q D, Li C, Fang S F, Zhou B X. J Jiangsu Univ (Nat Sci Ed), 2008; 29: 131
[18] (刘文庆, 刘庆冬, 李 聪, 方淑芳, 周邦新. 江苏大学学报(自然科学版), 2008; 29: 131)
[19] Guo J T. Material Science and Engineering for Superalloys. Beijing: Science Press, 2008: 123
[19] (郭建亭. 高温合金材料学. 北京: 科学出版社, 2008: 123)
[20] Ducki K J, Hetmanczyk M, Kuc D. Mater Chem Phys, 2003; 81: 490
[21] Cicco H D, Luppo M I, Gribaudo L M, Garcia J O. Mater Charact, 2004; 52: 85
[22] Zhao J C, Ravikumar V. Metall Mater Trans, 2001; 32A: 1271
[23] Zhao S Q, Xie X S, Smith G D, Patel S J. Mater Sci Eng, 2003; A355: 96
[24] Wu P, He X L. Acta Metall Sin, 1999; 35: 1009
[24] (吴 平, 贺信莱. 金属学报, 1999; 35: 1009)
[25] Aust K, Hanneman R, Niessen P, Westbrook J. Acta Metall, 1968; 16: 291
[26] Li X Y, Zhang J, Rong L J, Li Y Y. J Mater Sci Eng, 2005; 23: 483
[26] (李秀艳, 张 建, 戎利建, 李依依. 材料科学与工程学报, 2005; 23: 483)
[27] Wu Y X, Li X Y, Wang Y M. Acta Mater, 2007; 55: 4845
[28] Wan X J, Chen Y X, Cheng X Y. Prog Nat Sci, 2001; 11: 458
[28] (万晓景, 陈业新, 程晓英. 自然科学进展, 2001; 11: 458)
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[4] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[5] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[6] 王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
[7] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[8] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[9] 李斗, 徐长江, 李旭光, 李双明, 钟宏. La掺杂PCeyFe3CoSb12 热电材料及涂层的热电性能[J]. 金属学报, 2023, 59(2): 237-247.
[10] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[11] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[12] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[13] 胡敏, 周生玉, 国京元, 胡明昊, 李冲, 李会军, 王祖敏, 刘永长. 多相Ni3Al基高温合金微区氧化行为[J]. 金属学报, 2023, 59(10): 1346-1354.
[14] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[15] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.