Please wait a minute...
金属学报  2016, Vol. 52 Issue (3): 271-280    DOI: 10.11900/0412.1961.2015.00220
  论文 本期目录 | 过刊浏览 |
不同浓度富Fe相粒子对Al-Mg-Si-Cu系合金弯边性能的影响*
邢辉,郭明星(),汪小锋,张艳,张济山,庄林忠
北京科技大学新金属材料国家重点实验室, 北京 100083
EFFECT OF Fe-RICH PHASE PARTICLES WITH DIFFER-ENT CONCENTRATIONS ON THE BENDABILITYOF Al-Mg-Si-Cu SERIES ALLOYS
Hui XING,Mingxing GUO(),Xiaofeng WANG,Yan ZHANG,Jishan ZHANG,Linzhong ZHUANG
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

邢辉, 郭明星, 汪小锋, 张艳, 张济山, 庄林忠. 不同浓度富Fe相粒子对Al-Mg-Si-Cu系合金弯边性能的影响*[J]. 金属学报, 2016, 52(3): 271-280.
Hui XING, Mingxing GUO, Xiaofeng WANG, Yan ZHANG, Jishan ZHANG, Linzhong ZHUANG. EFFECT OF Fe-RICH PHASE PARTICLES WITH DIFFER-ENT CONCENTRATIONS ON THE BENDABILITYOF Al-Mg-Si-Cu SERIES ALLOYS[J]. Acta Metall Sin, 2016, 52(3): 271-280.

全文: PDF(11108 KB)   HTML
摘要: 

通过弯边变形, 拉伸实验, OM, SEM和TEM观察等手段研究了不同浓度富Fe相粒子对Al-Mg-Si-Cu系合金板材弯边性能的影响规律. 结果表明, 随着富Fe相浓度增加, 合金板材沿纵横向的弯边性能存在较大差异, 不含富Fe相粒子的合金板材沿2个方向弯边变形180°后外表面粗糙度增加, 处于中等浓度(含0.2%Fe)时沿2个方向弯边变形后均具有优异的外表面质量, 但是随着富Fe相浓度的进一步增加(至0.5%Fe), 合金板材沿横向弯边变形后在外表面出现微裂纹. 虽然富Fe相粒子浓度增加对合金板材纵横向延伸率影响不大, 但是拉伸断口,弯边和拉伸断裂后的侧表面组织均表明, 不含富Fe相的合金板材弯边变形后外表面粗糙度增加与剪切带组织密切相关, 而含有较高浓度富Fe相粒子的合金板材弯边变形后外表面出现的微裂纹与粗大富Fe相粒子的尺寸,形态以及分布状态密切相关. 此外, 根据不同浓度富Fe相粒子与合金弯边性能间的定量关系, 提出了合金弯边变形后外表面粗糙度增加和微裂纹形成的模型示意图.

关键词 Al-Mg-Si-Cu合金富Fe相弯边性能剪切带模型    
Abstract

The influence of Fe-rich phase particle with different contents on the bendability of the Al-Mg-Si-Cu alloys was investigated by means of bending and tensile tests, OM, SEM and TEM characterization. The results reveal that, with the increase of Fe-rich phase particle content, the bendability of the alloy sheets in the longitudinal and transverse directions was quite different, and the outer surface of the alloy sheets after bending of 180° along the two directions became much rough, especially along the transverse direction. When the Fe-rich phase concentration increased to the medium level (0.2%Fe), the quality of outer surface after bending was very good. With further increasing Fe-rich phase to the high level (0.5%Fe), micro cracks were produced after bending along the transverse direction. Although increasing Fe-rich phase concentration did not give a great effect on the elongation of the alloys in the two directions, according to the tensile fracture and microstructure in the slid surface of the specimen after bending or tension test, the roughening of outer surface of the alloy sheet without Fe-rich phase was closely related with the formation of shear bands, while for the alloy sheet with high concentration of Fe-rich phases, the formation of micro cracks after bending was mainly related with the size, morphology and distribution of coarse Fe-rich phases. In addition, based on the quantitative relationship between Fe-rich phase concentration and bendability of the alloy sheets, the models of outer surface roughening and micro cracks forming during bendingare proposed.

Key wordsAl-Mg-Si-Cu alloy    Fe-rich phase    bendability    shear band    modelling
收稿日期: 2015-04-14     
基金资助:* 国家高技术研究发展计划项目2013AA032403, 国家自然科学基金项目51571023和51301016, 中央高校基本科研业务费项目FRF-TP-15-051A3和北京实验室项目FRF-SD-B-005B资助
Alloy Mg Si Cu Mn Fe Al
No.1 0.80 0.90 0.20 0.10 0.00 Bal.
No.2 0.80 1.00 0.20 0.15 0.20 Bal.
No.3 0.80 1.20 0.50 0.30 0.50 Bal.
表1  实验用Al-Mg-Si-Cu合金的化学成分
图1  弯边试样切取方法及半导弯边实验示意图
图2  3种固溶态合金的SEM像和EDS分析
图3  固溶态No.1和No.3合金的TEM像和粒子SAED谱
图4  预时效态合金沿不同方向180°弯边变形后的外表面形貌
图5  3种合金沿纵横向弯边后的侧表面OM像
图6  No.3合金沿纵,横向弯边后的SEM像和EDS分析
图7  预时效态合金沿不同方向拉伸的应力-应变曲线
Alloy Direction Yield strength / MPa Ultimate tensile strength / MPa Elongation / % n R
No.1 Longitudinal 113.2 236.6 26.30 0.312 0.725
Transverse 104.7 223.4 24.93 0.323 0.649
No.2 Longitudinal 133.0 269.2 25.73 0.298 0.700
Transverse 124.9 253.4 26.01 0.302 0.661
No.3 Longitudinal 161.8 305.6 25.37 0.288 0.645
Transverse 157.4 298.9 25.84 0.289 0.644
表2  预时效态合金沿不同方向拉伸的力学性能
图8  3种合金沿横向拉伸后的断口SEM像及EDS分析
图9  3 种合金沿不同方向拉伸断裂后侧面OM像
Alloy Direction Initial thickness / mm Final thickness / mm Ra / mm rmin
No.1 Longitudinal 0.966 0.620 0.346 0.734
Transverse 0.998 0.700 0.298 1.013
No.2 Longitudinal 1.121 0.680 0.441 0.361
Transverse 1.089 0.710 0.379 0.583
No.3 Longitudinal 1.082 0.780 0.302 0.987
Transverse 1.081 0.880 0.201 1.985
表3  3种合金沿不同方向弯边变形时的最小弯曲半径
图10  不同浓度富Fe 相粒子对合金弯边变形过程影响的模型示意图
[1] Miller W S, Zhuang L, Bottema J, Wittebrood A J, De Smet P, Haszler A, Vieregge A.Mater Sci Eng, 2000; A280: 37
[2] Wang D.Shanghai Nonferrous Met, 2013; 34(3): 130
[2] (王丹. 上海有色金属, 2013; 34(3): 130)
[3] Wang M J, Huang D Y, Jiang H T.Heat Treatment Met, 2006; (09): 34
[3] (王孟君, 黄电源, 姜海涛. 金属热处理, 2006; (09): 34)
[4] Sun J.Tech Educ, 2010; (02): 26
[4] (孙静. 技术与教育, 2010; (02): 26)
[5] Liu Y W, Wang S W.Auto Engineer, 2011; (02): 50
[5] (刘伟燕, 王书伟. 汽车工程师, 2011; (02): 50)
[6] Zhang Q X, Guo M X, Hu X Q, Cao L Y, Zhuang L Z, Zhang J S.Acta Metall Sin, 2013; 49: 1604
[6] (张巧霞, 郭明星, 胡晓倩, 曹零勇, 庄林忠, 张济山. 金属学报, 2013; 49: 1604)
[7] Cui L, Guo M X, Peng X Y, Zhang Y, Zhang J S, Zhuang L Z.Acta Metall Sin, 2015; 51: 289
[7] (崔莉, 郭明星, 彭祥阳, 张艳, 张济山, 庄林忠. 金属学报, 2015; 51: 289)
[8] Wang A D. Master Thesis, Dalian University of Technology, 2011
[8] (王安东. 大连理工大学硕士学位论文, 2011)
[9] Wang X F, Guo M X, Cao L Y, Luo J R, Zhang J S, Zhuang L Z.Mater Sci Eng, 2015; A621: 8
[10] Sarkar J, Kutty T R G, Wilkinson D S, Embury J D, Lloyd D J.Mater Sci Eng, 2004; A369: 258
[11] Itoh G, Suzuki T, Horikawa K. Mater Sci Forum, 2002; 396-402: 1193
[12] Hirth S M, Marshall G J, Court S A, Lloyd D J. Mater Sci Eng, 2001; A319-321: 452
[13] Datsko J, Yang C T.J Eng Ind, 1960; 82: 309
[14] Davidkov A, Petrov R H, Smet P D, Schepers B, Kestens L A I.Mater Sci Eng, 2011; A528: 7068
[15] Castany P, Diologent F, Rossoll A, Despois J F, Bezen?on C, Mortensen A.Mater Sci Eng, 2013; A559: 558
[16] Mulazimoglu M, Zaluska A, Gruzleski J, Paray F.Metall Mater Trans, 1996; 27A: 929
[17] Allen C M, O'Reilly K A Q, Cantor B, Evans P V.Prog Mater Sci, 1998; 43: 89
[18] Tanihata H, Sugawara T, Matsuda K, Ikeno S.J Mater Sci, 1999; 34: 1205
[19] Couper M J, Rinderer B, Yao J Y. Mater Sci Forum, 2006; 519-521: 303
[20] Peng X Y, Guo M X, Wang X F, Cui L, Zhang J S, Zhuang L Z.Acta Metall Sin, 2015; 51: 169
[20] (彭祥阳, 郭明星, 汪小锋, 崔莉, 张济山, 庄林忠. 金属学报, 2015; 51: 169)
[21] Wang X F, Guo M X, Chapuis A, Luo J R, Zhang J S, Zhuang L Z.Mater Sci Eng, 2015; A644: 137
[22] Lievers W B, Pilkey A K, Worswick M J.Mech Mater, 2003; 35: 661
[23] Lloyd D J, Weatherly G C, Perovic D D.In: Subodh K Das ed., Proceedings of Symposium: Automotive Alloys 1999, San Diego: TMS, 2000: 211
[24] Lv D. Master Thesis, Lanzhou University of Technology, 2009
[24] (吕丹. 兰州理工大学硕士学位论文, 2009)
[25] Fan X G.PhD Dissertation, Harbin Institute of Technology, 2007
[25] (樊喜刚. 哈尔滨工业大学博士学位论文, 2007)
[1] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[2] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[3] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[4] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[5] 张志东. 铁磁性三维Ising模型精确解及时间的自发产生[J]. 金属学报, 2023, 59(4): 489-501.
[6] 王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
[7] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[8] 居天华, 舒念, 何维, 丁学勇. 合金溶液中溶质间活度相互作用系数预测模型[J]. 金属学报, 2023, 59(11): 1533-1540.
[9] 王楠, 陈永楠, 赵秦阳, 武刚, 张震, 罗金恒. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299-1310.
[10] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[11] 韩汝洋, 杨庚蔚, 孙新军, 赵刚, 梁小凯, 朱晓翔. 钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为[J]. 金属学报, 2022, 58(12): 1589-1599.
[12] 陈伟, 章环, 牟娟, 朱正旺, 张海峰, 王沿东. 显微组织和应变速率对TC4合金动态力学性能和绝热剪切带的影响[J]. 金属学报, 2022, 58(10): 1271-1280.
[13] 刘中秋, 李宝宽, 肖丽俊, 干勇. 连铸结晶器内高温熔体多相流模型化研究进展[J]. 金属学报, 2022, 58(10): 1236-1252.
[14] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[15] 胡标, 张华清, 张金, 杨明军, 杜勇, 赵冬冬. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57(9): 1199-1214.