Please wait a minute...
金属学报  2015, Vol. 51 Issue (7): 784-790    DOI: 10.11900/0412.1961.2014.00606
  本期目录 | 过刊浏览 |
超快冷终冷温度对含Nb-V-Ti微合金钢组织转变及析出行为的影响*
李小琳,王昭东(),邓想涛,张雨佳,类承帅,王国栋
EFFECT OF FINAL TEMPERATURE AFTER ULTRA-FAST COOLING ON MICROSTRUCTURAL EVOLUTION AND PRECIPITATION BEHAVIOR OF Nb-V-Ti BEARING LOW ALLOY STEEL
Xiaolin LI,Zhaodong WANG(),Xiangtao DENG,Yujia ZHANG,Chengshuai LEI,Guodong WANG
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
全文: PDF(8339 KB)   HTML
摘要: 

以复合添加Nb, V和Ti的低碳微合金钢为研究对象, 采用热模拟试验机模拟高温轧制+超快速冷却+缓冷工艺, 采用OM, HRTEM和显微硬度计等对超快冷至不同温度实验钢的组织转变和析出规律进行研究. 结果表明, 随着超快冷终冷温度的升高, 显微组织由贝氏体向珠光体和铁素体转变, 碳化物形核位置从贝氏体转变为铁素体, 铁素体中的析出物密度大于贝氏体中的, 且在620 ℃达到最大. 超快冷至不同温度时析出物的尺寸均小于10 nm, 纵横比均接近于1, 即析出物形态更接近于球形, 且随终冷温度的降低, 析出物尺寸逐渐减小. 利用Orowan机制计算了析出强化增量, 得出在620 ℃析出强化对屈服强度的贡献最大, 可达到25.6%.

关键词 Nb-V-Ti微合金钢超快冷硬度析出强化    
Abstract

High strength low-alloy (HSLA) steel has been widely used in buildings, bridges, ships and automobiles because of the remarkable high strength and forming property. Conventional HSLA steels are strengthened by a combination of grain refinement, solid-solution strengthening and precipitation hardening, and the contribution of precipitation hardening is considered to be minor, since many of the alloying elements are added to HSLA steels in the past basically for the strengthening of grain refinement. However, in recent research, yield strengths up to 780 MPa have been achieved in Ti and Mo bearing HSLA sheet steels by producing microstructures that consist of a ferritic matrix with nanometer-sized carbides, and the precipitation strengthening has been estimated to be approximately 300 MPa. Nowadays, thermo mechanical controll process (TMCP) is widely used to process HSLA steels, the final temperature of ultra-fast cooling (UFC) plays a decisive role for microstructure evolution and precipitation behavior, and finally determines the mechanical properties of the steels. In this work, the effects of final temperature after UFC on microstructural evolution, precipitation behavior and micro-hardness of Nb-V-Ti bearing low alloy steel were studied by using the thermal mechanical simulator, OM, HRTEM and micro-hardness instrument. The results showed that the microstructure and nucleation sites of micro-alloy carbides changed with final temperature after UFC. The microstructure changed from bainite to pearlite and ferrite and the nucleation sites changed from bainite to ferrite with final cooling temperature increasing. The number density of the precipitates in ferrite matrix was greater than that in bainite. Furthermore, the number density of the nanometer sized carbides got the maximum values at 620 ℃. The aspect ratios of the precipitates were close to 1, which meat that the precipitation morphology close to spherical. The sizes of the carbides were all less than 10 nm and became smaller with the decrease of final cooling temperature. Through the calculation by Orowan mechanism, the contributions of the precipitation strengthening to yield strength could reach 25.6% at the final cooling temperature of 620 ℃.

Key wordsNb-V-Ti bearing low alloy steel    ultra-fast cooling    hardness    precipitation strengthening
    
基金资助:*国家自然科学基金资助项目51234002

引用本文:

李小琳,王昭东,邓想涛,张雨佳,类承帅,王国栋. 超快冷终冷温度对含Nb-V-Ti微合金钢组织转变及析出行为的影响*[J]. 金属学报, 2015, 51(7): 784-790.
Xiaolin LI, Zhaodong WANG, Xiangtao DENG, Yujia ZHANG, Chengshuai LEI, Guodong WANG. EFFECT OF FINAL TEMPERATURE AFTER ULTRA-FAST COOLING ON MICROSTRUCTURAL EVOLUTION AND PRECIPITATION BEHAVIOR OF Nb-V-Ti BEARING LOW ALLOY STEEL. Acta Metall Sin, 2015, 51(7): 784-790.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2014.00606      或      https://www.ams.org.cn/CN/Y2015/V51/I7/784

图1  超快冷至不同温度的缓冷与动态连续冷却工艺曲线图
图2  实验钢超快冷至不同温度时的OM像
图3  实验钢超快冷至不同温度时的析出物形貌
图4  实验钢超快冷至不同温度时纳米碳化物的HRTEM像
图5  实验钢超快冷至不同温度时的显微硬度
图6  实验钢超快冷至不同温度时基体的屈服强度及析出强化增量
[1] Guo J, Shang C J, Yang S W, Guo H, Wang X M, He X L. Mater Des, 2009; 30: 129
[2] Ghosh A, Das S, Chatterjee S, Rao R P. Mater Charact, 2006; 56: 59
[3] Shin D H, Park K T, Kim Y S. Scr Mater, 2003; 48: 469
[4] Manohar P A, Chandra T, Killmore C R. ISIJ Int, 1996; 36: 1486
[5] Chen J, Chen X W, Tang S, Liu Z Y, Wang G D. Mater Sci Forum, 2013; 749: 243
[6] Wang W, Shan Y Y, Yang K. Acta Metall Sin, 2007; 43: 578 (王 伟, 单以银, 杨 柯. 金属学报, 2007; 43: 578)
[7] You Y, Wang X M, Shang C J. Acta Metall Sin, 2012; 48: 1290 (由 洋, 王学敏, 尚成嘉. 金属学报, 2012; 48: 1290)
[8] Kestenbach H J, Campos S S, Morales E V. Mater Sci Technol, 2006; 22: 615
[9] Cizek P, Wynne B P, Davies C H J, Muddle B C, Hodgson P D. Metall Mater Trans, 2002; 33A: 1331
[10] Shin D H, Park K T, Kim Y S. Scr Mater, 2003; 48: 469
[11] Park J W, Kim J W, Chung Y H. Scr Mater, 2004; 51: 181
[12] Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945
[13] Lu J X, Wang G D. Iron Steel, 2005; 40(9): 69 (陆匠心, 王国栋. 钢铁, 2005; 40(9): 69)
[14] Chen J, Lü M Y, Tang S, Liu Z Y, Wang G D. Acta Metall Sin, 2014; 50: 524 (陈 俊, 吕梦阳, 唐 帅, 刘振宇, 王国栋. 金属学报, 2014; 50: 524)
[15] Chen J, Tang S, Liu Z Y, Wang G D. Acta Metall Sin, 2012; 48: 441 (陈 俊, 唐 帅, 刘振宇, 王国栋. 金属学报, 2012; 48: 441)
[16] Tang S, Liu Z Y, Wang G D, Misra R D K. Mater Sci Eng, 2013; A580: 257
[17] Duan X G, Cai Q W, Wu H B. Acta Metall Sin, 2011; 47: 251 (段修钢, 蔡庆伍, 武会宾. 金属学报, 2011; 47: 251)
[18] Wang Z Q, Mao X P, Yang Z G, Sun X J, Yong Q L, Li Z D, Weng Y Q. Mater Sci Eng, 2011; A529: 459
[19] Yi H L, Du L X, Wang G D. ISIJ Int, 2006; 46: 754
[20] Hong S G, Kang K B, Park C G. Scr Mater, 2002; 46: 163
[21] Park D B, Huh M Y, Shim J H, Suh J Y, Lee K H, Jung W S. Mater Sci Eng, 2005; A394: 339
[22] Wang X N, Di H S, Du L X. Acta Metall Sin, 2012; 48: 621 (王晓南, 邸洪双, 杜林秀. 金属学报, 2012; 48: 621)
[23] Huang X Y. Microstructure of Materials and Its Electron Microscopy Analysis. Beijing: Metallurgical Industry Press, 2008: 539 (黄孝瑛. 材料微观结构的电子显微分析. 北京: 冶金工业出版社, 2008: 539)
[24] Zhou R S. Physics of Metals. ShangHai: Higher Education Press, 1992: 340 (周如松. 金属物理. 上海: 高等教育出版社, 1992: 340)
[1] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[2] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[3] 李博,张忠铧,刘华松,罗明,兰鹏,唐海燕,张家泉. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变[J]. 金属学报, 2019, 55(6): 762-772.
[4] 邵毅, 李彦默, 刘晨曦, 严泽生, 刘永长. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化[J]. 金属学报, 2019, 55(11): 1367-1378.
[5] 李冬梅, 姜贝贝, 李晓娜, 王清, 董闯. 高硬导电Cu-Ni-Si合金成分规律[J]. 金属学报, 2019, 55(10): 1291-1301.
[6] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[7] 张可, 李昭东, 隋凤利, 朱正海, 章小峰, 孙新军, 黄贞益, 雍岐龙. 冷却速率对Ti-V-Mo复合微合金钢组织转变及力学性能的影响[J]. 金属学报, 2018, 54(1): 31-38.
[8] 王猛, 刘振宇, 李成刚. 轧后超快冷及亚温淬火对5%Ni钢微观组织与低温韧性的影响机理[J]. 金属学报, 2017, 53(8): 947-956.
[9] 何仙灵,杨庚蔚,毛新平,余驰斌,达传李,甘晓龙. Nb对Ti-Mo微合金钢连续冷却相变规律及组织性能的影响[J]. 金属学报, 2017, 53(6): 648-656.
[10] 陈占兴,丁宏升,刘石球,陈瑞润,郭景杰,傅恒志. 直流电流对Ti-48Al-2Cr-2Nb合金组织和性能的影响[J]. 金属学报, 2017, 53(5): 583-591.
[11] 童文辉,赵子龙,张新元,王杰,国旭明,段新华,刘豫. 球墨铸铁表面激光熔覆TiC/钴基合金组织和性能研究[J]. 金属学报, 2017, 53(4): 472-478.
[12] 刘进,劳远侠,汪渊. Cu对AlN/TiN-Cu复合多层膜微观结构和力学性能的影响[J]. 金属学报, 2017, 53(4): 465-471.
[13] 吴臣亮,张松,张春华,关锰,谭俊哲. 不锈钢表面FeCoCrAlCuNiMox激光高熵合金化层的相演变*[J]. 金属学报, 2016, 52(7): 797-803.
[14] 张可,雍岐龙,孙新军,李昭东,赵培林. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响*[J]. 金属学报, 2016, 52(5): 529-537.
[15] 沈琴,王晓姣,赵安宇,何益锋,方旭磊,马佳荣,刘文庆. Mn对钢中富Cu相和NiAl相复合析出过程的影响*[J]. 金属学报, 2016, 52(5): 513-518.