Please wait a minute...
金属学报  2015, Vol. 51 Issue (4): 449-457    DOI: 10.11900/0412.1961.2014.00425
  本期目录 | 过刊浏览 |
缺口取向和再结晶对一种定向凝固钴基高温合金热疲劳性能的影响
濮晟1,2(), 王莉2,3, 谢光2,3, 丁贤飞4, 楼琅洪2, 冯强1,4
1 北京科技大学新金属材料国家重点实验室, 北京 100083
2 中国科学院金属研究所, 沈阳 110016
3 中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
4 北京科技大学国家材料服役安全科学中心, 北京 100083
EFFECT OF NOTCH ORIENTATION AND LOCAL RECRYSTALLIZATION ON THERMAL FATIGUE PROPERTIES OF A DIREC- TIONALLY SOLIDIFIED Co-BASED SUPERALLOY
PU Sheng1,2(), WANG Li2,3, XIE Guang2,3, DING Xianfei4, LOU Langhong2, FENG Qiang1,4
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
3 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
4 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083
引用本文:

濮晟, 王莉, 谢光, 丁贤飞, 楼琅洪, 冯强. 缺口取向和再结晶对一种定向凝固钴基高温合金热疲劳性能的影响[J]. 金属学报, 2015, 51(4): 449-457.
Sheng PU, Li WANG, Guang XIE, Xianfei DING, Langhong LOU, Qiang FENG. EFFECT OF NOTCH ORIENTATION AND LOCAL RECRYSTALLIZATION ON THERMAL FATIGUE PROPERTIES OF A DIREC- TIONALLY SOLIDIFIED Co-BASED SUPERALLOY[J]. Acta Metall Sin, 2015, 51(4): 449-457.

全文: PDF(8884 KB)   HTML
摘要: 

在定向凝固钴基高温合金中采用V型缺口分别垂直和平行于凝固方向的板状热疲劳试样, 并在缺口位置预制再结晶组织, 研究了在最高温度为1000 ℃, 最低温度为室温的冷热循环下, 缺口取向和再结晶对定向凝固钴基高温合金热疲劳性能的影响. 结果表明, 缺口取向垂直于凝固方向时, 基体在应力作用下循环氧化开裂; 缺口平行于凝固方向时, 热疲劳性能下降, 裂纹沿枝晶间扩展. 再结晶降低定向凝固钴基高温合金的热疲劳性能, 再结晶晶界氧化开裂, 晶界析出的M23C6型碳化物氧化脱落后形成的孔洞加速了裂纹扩展; 连接枝晶间碳化物的再结晶晶界成为缺口平行于凝固方向时热疲劳裂纹的优先扩展通道.

关键词 缺口取向再结晶热疲劳定向凝固钴基高温合金    
Abstract

The directionally solidificated (DS) Co-based superalloys are widely used in aircraft turbine vanes due to the good stress-rupture parameters and excellent hot corrosion resistance. The cyclic change of temperatures and complex stress state thermal fatigue (TF) cracks happen frequently in vanes during service. However, most of the work are conducted in Ni-based superalloys and there is rare report concerning the TF behavior of DS Co-based superalloys. Furthermore, due to the residual strain accumulated during processing, shot peening, grinding and recrystallization (RX) frequently occur when the DS components are exposed to high temperatures. It is believed that RX may change the microstructure, especially adding more grain boundaries to DS alloys, and result in the reduction of the mechanical properties of DS superalloys. Therefore, in this work, V-notch plate specimens with notch direction perpendicular and parallel to the DS orientation are machined from the DS plate. Local RX grains are prepared (local indented and then heat treated) in the notch areas of some samples. TF test is conducted between 1000 ℃ to room temperature. The effect of DS orientation and RX on TF properties of a DS Co-based superalloy is investigated. The results indicate that the cracks propagate along the interdendritic regions in the samples with notches parallel to the DS direction, which exhibites lower TF properties than samples with notches vertical to the DS direction. TF cracks initiate and propagate along RX boundaries in samples containing RX grains. Precipitation of M23C6 carbides is found along the RX boundaries during TF tests. Due to the oxidation at the tip of crack, M23C6 desquamates and leads to the formation of micro voids, which accelerates the crack propagation and decreases TF properties of tested alloy. In samples with notches parallel to the DS direction, cracks preferentially propagate along the RX grain boundaries.

Key wordsnotch orientation    recrystallization    thermal fatigue    directional solidification    Co-based superalloy
    
ZTFLH:  TG132.3  
基金资助:*国家重点基础研究发展计划项目2010CB631201, 国家高技术研究发展计划项目2012AA03A513, 国家自然科学基金项目50901079和教育部支撑技术项目 625010337资助
作者简介: null

濮 晟, 男, 1981年生, 工程师

图1  定向凝固钴基高温合金横向和纵向热疲劳试样的示意图
图2  定向凝固钴基高温合金铸态显微组织的OM像
图3  定向凝固钴基高温合金中碳化物的SEM和BSE像
图4  M7C3型碳化物和MC型碳化物的EDS分析
图5  铸态定向凝固高温合金经1250 ℃退火90 min后碳化物的XRD谱
图6  铸态和压痕变形定向凝固钴基高温合金经1250 ℃退火90 min后的OM像
图7  定向凝固钴基高温合金的热疲劳裂纹长度L与冷热循环周次N的关系曲线
图8  不含再结晶的横向定向凝固钴基高温合金经不同周次热疲劳后裂纹的OM像
图9  横向定向凝固钴基高温合金75次冷热循环后主裂纹前沿的SEM像及EDS分析
图10  含再结晶的横向定向凝固钴基高温合金不同循环周次后的裂纹形貌OM和SEM像
图11  纵向定向凝固钴基高温合金不同周次热疲劳后裂纹的萌生和扩展形貌
图12  含再结晶的纵向定向凝固钴基高温合金裂纹的萌生和扩展及裂纹附近碳化物形貌
[1] Badger F S. J Met, 1958; 10: 512
[2] Ratna V, Sarma D S. Scr Metall, 1993; 29: 467
[3] Glover N E, Davis C L. Scr Metall, 1996; 34: 675
[4] Li Y L, Yuan C, Guo J T. Acta Metall Sin, 2006; 42: 1056
[4] (李友林, 袁 超, 郭建亭. 金属学报, 2006; 42: 1056)
[5] Beck C G, Santhanam A T. Scr Metall, 1978; 12: 255
[6] Bhattachar V S. Int J Fatigue, 1995; 17: 407
[7] Woodford D A, Mowbray D F. Mater Sci Eng, 1974; A16: 5
[8] Xia P C, Yu J J, Sun X F, Guan H R, Hu Z Q. Rare Met Mater Eng, 2008; 37: 50
[8] (夏鹏成, 于金江, 孙晓峰, 管恒荣, 胡壮麒. 稀有金属材料与工程, 2008; 37: 50)
[9] Reuchet J, Remy L. Mater Sci Eng, 1983; A58:19
[10] Miao J S, Pollock T M, Jones J W. Acta Mater, 2009; 57: 5964
[11] Pedron J P, Pineau A. Mater Sci Eng, 1982; 56: 143
[12] Xiao X, Xu H, Qing X Z, Guo Y A, Guo J T, Zhou L Z. Acta Metall Sin, 2011; 47: 129
[12] (肖 旋, 许 辉, 秦学智, 郭永安, 郭建亭, 周兰章. 金属学报, 2011; 47: 129)
[13] Xia P C, Yu J J, Sun X F, Guan H R, Hu Z Q. Rare Met Mater Eng, 2011; 40: 152
[13] (夏鹏成, 于金江, 孙晓峰, 管恒荣, 胡壮麒. 稀有金属材料与工程, 2011; 40: 152)
[14] Panwisawas C, Mathur H, Gebelin J, Putman D, Rae C M F, Reed R C. Acta Mater, 2013; 61: 51
[15] Wang L, Pyczak F, Zhang J, Lou L H, Singer R F. Mater Sci Eng, 2012; A532: 487
[16] Xie G, Wang L, Zhang J, Lou L H. Metall Mater Trans, 2008; 39A: 206
[17] Khan T, Caron P, Nakagawa Y G. J Met, 1986; 38: 16
[18] Pu S, Zhang J, Shen Y F, Lou L H. Mater Sci Eng, 2008; A480: 428
[19] Guo X F, Wang H Q. Aeronaut Mater, 1984; (6): 1
[19] (郭秀芬, 王海清. 航空材料, 1984; (6): 1)
[20] Robert A K, Richard W N. Int J Fatigue, 2010; 32: 1330
[21] Xia P C, Yang L, Yu J J, Sun X F, Guan H R, Hu Z Q. Rare Met, 2011; 30(special issue): 472
[22] Liu P S, Chen G F, Liang K M. J Chin Soc Corros Prot, 1999; 19: 339
[22] (刘培生, 陈国锋, 梁开明. 中国腐蚀与防护学报, 1999; 19: 339)
[23] Reuchet J, Remy L. Mater Sci Eng, 1983; A58: 19
[24] Kang B, Liu X B, Cisloiu C, Chang K M. Mater Sci Eng, 2003; A347: 205
[25] Brandes E A,Brook G B. Smithells Metals Reference Book. 7th Ed., London: Butterworths Press, 1992: 11
[26] Chen K Y, Zhao L R. J Phys Chem Sol, 2007; 68: 1805
[27] Zheng Y R, Ruan Z C, Wang S C. Acta Metall Sin, 1995; 31(suppl): 325
[27] (郑运荣, 阮忠慈, 王顺才. 金属学报, 1995; 31(增刊): 325)
[28] Lu Z, Lu L, Xu Y B, Hu Z Q. Fatigue Fract Eng Mater Struct, 1998; 21: 1589
[29] Jiang W H, Yao X D, Guan H R. Mater Sci Eng, 1999; A271: 101
[30] He L Z, Zheng Q, Sun X F. Mater Sci Eng, 2005; A397: 297
[31] Mishin Y, Herzig C. Mater Sci Eng, 1999; A260: 55
[32] Parthasarathy T A, Shewmon P G. Scr Metall, 1983; 17: 943
[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[5] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[9] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[10] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[11] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[12] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[13] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[14] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[15] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.