Please wait a minute...
金属学报  2015, Vol. 51 Issue (4): 440-448    DOI: 10.11900/0412.1961.2014.00349
  本期目录 | 过刊浏览 |
NiCu低合金钢在含Cl-的除氧NaHCO3溶液中的腐蚀行为研究
卢云飞(), 阳靖峰, 董俊华, 柯伟
中国科学院金属研究所材料环境腐蚀研究中心, 沈阳 110016
THE CORROSION BEHAVIOUR OF NiCu LOW ALLOY STEEL IN A DEAERATED BICARBONATE SOLUTION CONTAINING Cl- IONS
LU Yunfei(), YANG Jingfeng, DONG Junhua, KE Wei
Environmental Corrosion Research Center of Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

卢云飞, 阳靖峰, 董俊华, 柯伟. NiCu低合金钢在含Cl-的除氧NaHCO3溶液中的腐蚀行为研究[J]. 金属学报, 2015, 51(4): 440-448.
Yunfei LU, Jingfeng YANG, Junhua DONG, Wei KE. THE CORROSION BEHAVIOUR OF NiCu LOW ALLOY STEEL IN A DEAERATED BICARBONATE SOLUTION CONTAINING Cl- IONS[J]. Acta Metall Sin, 2015, 51(4): 440-448.

全文: PDF(3504 KB)   HTML
摘要: 

对NiCu低合金钢在模拟深层地下水环境, 即除氧0.1 mol/L NaHCO3+0.1 mol/L NaCl溶液中, 原位监测其在长时间浸泡条件下的开路电位变化曲线及阻抗谱的演化, 研究电极表面的腐蚀演化规律, 并与相同条件下低碳钢的腐蚀行为进行比较. 结果表明, NiCu低合金钢在本实验溶液中的耐蚀性要显著优于低碳钢, 尤其是其耐局部腐蚀的能力更优. 合金元素Ni富集在内锈层中, 可能以NiFe2O4的形式存在, 而合金元素Cu的富集不明显, 可能的存在形式为CuFeO2.

关键词 低合金钢锈层HCO3-Cl-    
Abstract

The corrosion behaviour of low alloy steel containing Ni and Cu was studied because it is a promising candidate canister material for the disposal of high-level radioactive waste (HLW) in China. Due to the intensely radioactive nature of HLW, the waste has to be prevented from reaching the biosphere for many tens of thousands of years. Deep geological disposal is now considered to be the most preferable option for isolating HLW and it relies on series of natural and engineered barriers, e.g. a metallic canister. However, as soon as the waste package is settled, groundwater would seep back slowly through the outer barriers and ultimately arrive at the surface of the canister. Accordingly, there comes the groundwater-induced dissolution of the canister and subsequent transport of radionuclides through the barriers. That is to say, the effectiveness of radionuclide retention and isolation depends mostly and finally on the corrosion resistance of metallic canisters in deep groundwater environments. In this work, the test solution is deaerated 0.1 mol/L NaHCO3+0.1 mol/L NaCl, simulating the deep groundwater environment. The evolution of corrosion of NiCu low alloy steel in the test solution was investigated by electrochemical measurements. XRD was used to illustrate the composition of formed corrosion products. SEM was used to observe the electrode surface morphology and the cross section of the rust layer. The electrochemical results showed that low alloy steel has a lower corrosion rate and is less prone to localized corrosion than low carbon steel. In order to understand the mechanism of alloying elements, EDS and EPMA were used to analyse the distribution of alloying elements cross-sectional. XPS and E-pH diagram were used to estimate the possible existence form of alloying elements. By means of EDS and EPMA, it was founded that Ni is concentrated in the inner rust layer while the enrichment of Cu is not so obvious. XRD, XPS and E-pH results indicated that Ni and Cu are existed in the form of NiFe2O4 and CuFeO2 respectively.

Key wordslow alloy steel    rust    HCO3-    Cl-
    
ZTFLH:  TF777.1  
基金资助:*国家自然科学基金资助项目51471175
作者简介: null

卢云飞, 女, 1987年生, 博士生

Steel Ni Cu Cr Al C Si Mn S P Fe
NiCu 3.00 0.30 - - 0.21 0.21 0.58 0.0036 0.017 Bal.
Q235 0.01 0.01 0.01 0.02 0.18 0.25 0.50 0.0180 0.016 Bal.
表1  NiCu低合金钢和Q235低碳钢的化学成分
图1  NiCu低合金钢和低碳钢[10]在实验溶液中的极化曲线和开路电位随浸泡时间的变化曲线
图2  NiCu低合金钢和低碳钢在实验溶液中浸泡不同时间后的阻抗谱
图3  电位突变前后对应的等效电路图
Steel Time
Y0,HF
nHF Re
Y0,dl
ndl Rct
Y0,W
d S·sn·cm-2 W·cm2 S·sn·cm-2 W·cm2 S·s0.5·cm-2
NiCu 1 - - 17.61 0.0002497 0.8092 3280 0.03069
4 - - 13.40 0.0005871 0.8940 2234 0.01435
10 - - 10.13 0.0018340 0.8986 1291 0.02672
Q235 4 2.974×10-8 1 22.47 0.0003375 0.8380 1895 0.02753
10 2.902×10-8 1 22.61 0.0004578 0.8510 2229 0.04776
17 3.365×10-8 1 22.52 0.0006121 0.8304 1962 0.05585
表2  实验材料在浸泡初期的电化学阻抗谱拟合结果
图4  NiCu低合金钢在实验溶液中浸泡28 d去除表面锈层后的表面腐蚀形貌
Steel Time Y0,HF Re Y0,cp ncp Rcp Y0,pit npit Rpit Y0,passive
npassive Rpassive
d S·sn·cm-2 W·cm2 S·sn·cm-2 W·cm2 S·sn·cm-2 W·cm2 S·sn·cm-2 W·cm2
NiCu 16 - 8.882 0.008702 0.6457 2.664 0.002131 0.7883 369.5 0.001638 0.5710 2474
22 - 8.217 0.003152 0.6947 1.322 0.002105 0.8048 667.7 0.001622 0.5637 5547
28 - 7.715 0.003001 0.7126 1.181 0.001952 0.8161 463.5 0.001608 0.5709 4979
Q235 24 2.910×10-8 30.98 0.0001203 0.8086 16.73 0.001795 0.6088 1015 0.0001753 0.5611 6451
32 2.358×10-8 39.29 0.0002296 0.7512 51.99 0.0008616 0.5572 0.1764 0.0003387 0.4057 3412
表3  实验材料在浸泡后期的电化学阻抗谱拟合结果
图5  NiCu低合金钢在实验溶液中浸泡28 d后产物的XRD谱
图6  NiCu低合金钢的截面腐蚀形貌以及针对合金元素分布的EDS线扫结果和EPMA面扫结果
图7  NiCu钢在实验溶液中浸泡28 d后的内锈层产物中合金元素的XPS分析结果
图8  Fe-Ni-Cu-H2O 体系在25 ℃条件下的电位-pH图
[1] Wang J, Su R, Chen W M, Guo Y H, Jin Y X, Wen Z J, Liu Y M. Chin J Rock Mech Eng, 2006; 25: 649
[1] (王 驹, 苏 锐, 陈伟明, 郭永海, 金远新, 温志坚, 刘月妙. 岩石力学与工程学报, 2006; 25: 649)
[2] Bennett D G, Gens R. J Nucl Mater, 2008; 379: 1
[3] Nishimura T. J Nucl Mater, 2009; 385: 495
[4] Kursten B, Druyts F, MacDonald D D, Smart N R, Gens R, Wang L, Weetjens E, Govaerts J. Corros Eng Sci Technol, 2011; 46: 91
[5] Taniguchi N, Suzuki H, Kawasaki M, Naito M, Kobayashi M, Takahashi R, Asano H. Corros Eng Sci Technol, 2011; 46: 117
[6] Xia X, Idemitsu K, Arima T, Inagaki Y, Ishidera T, Kurosawa S, Iijima K, Sato H. Appl Clay Sci, 2005; 28: 89
[7] Lu C, Samper J, Fritz B, Clement A, Montenegro L. Phys Chem Earth, 2011; 36: 1661
[8] Neff D, Dillmann P, Bellot-Gurlet L, Beranger G. Corros Sci, 2005; 47: 515
[9] Neff D, Saheb M, Monnier J, Perrin S, Descostes M, L'Hostis V, Crusset D, Millard A, Dillmann P. J Nucl Mater, 2010; 402: 196
[10] Yang J F, Dong J H, Ke W. Acta Metall Sin, 2011; 47: 1321
[10] (阳靖峰, 董俊华, 柯 伟. 金属学报, 2011; 47: 1321)
[11] Taniguchi N, Honda A, Ishikawa H. Mater Res Soc Symp Proc, 1998; 506: 495
[12] Nishimura T, Katayama H, Noda K, Kodama T. Corros Sci, 2000; 42: 1611
[13] Wang Z, Liu J, Wu L, Han R, Sun Y. Corros Sci, 2013; 67: 1
[14] Cao G L, Li G M, Chen S, Chang W S, Chen X Q. Acta Metall Sin, 2011; 47: 145
[14] (曹国良, 李国明, 陈 珊, 常万顺, 陈学群. 金属学报, 2011; 47: 145)
[15] Matsushima I,translated by Jing Y K. Low-Alloy Corrosion Resistant Steels: A History of Development, Application and Research. Beijing: Metallurgic Industry Press, 2004: 100
[15] (松岛 岩 著,靳裕康 译. 低合金耐蚀钢—开发、发展及研究. 北京: 冶金工业出版社, 2004: 100)
[16] Kihira H, Kimura M. Corrosion, 2011; 67: 1
[17] Serdar M, Zulj L V, Bjegovic D. Corros Sci, 2013; 69: 149
[18] Mansfeld F, Lin S, Chen Y C, Shih H. J Electrochem Soc, 1988; 135: 906
[19] Bessone J, Mayer C, Juttner K, Lorenz W J. Electrochim Acta, 1983; 28: 171
[20] Cao C N,Zhang J Q. Introduction of Electrochemical Impedance Spectroscopy. Beijing: Science Press, 2002: 135
[20] (曹楚南,张鉴清. 电化学阻抗谱导论. 北京: 科学出版社, 2002: 135)
[21] Hao L, Zhang S X, Dong J H, Ke W. Corros Sci, 2012; 54: 244
[22] Kimura M, Kihira H, Ohta N, Hashimoto M, Senuma T. Corros Sci, 2005; 47: 2499
[23] Chen X H, Dong J H, Han E H, Ke W. Mater Lett, 2007; 61: 4050
[24] Nishimura T, Kodama T. Corros Sci, 2003; 45: 1073
[25] Hao L, Zhang S X, Dong J H, Ke W. Corros Sci, 2011; 53: 4187
[1] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[2] 刘雨薇, 顾天真, 王振尧, 汪川, 曹公望. Q235Q450NQR1在中国南沙海洋大气环境中暴晒34个月后的腐蚀行为[J]. 金属学报, 2022, 58(12): 1623-1632.
[3] 魏洁, 魏英华, 李京, 赵洪涛, 吕晨曦, 董俊华, 柯伟, 何小燕. 带损伤环氧涂层钢筋在Cl-和碳化耦合作用下的腐蚀行为[J]. 金属学报, 2020, 56(6): 885-897.
[4] 马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.
[5] 邹佳男, 庞晓露, 高克玮. 低合金钢X70和3Cr在超临界CO2环境中的缝隙腐蚀[J]. 金属学报, 2018, 54(4): 537-546.
[6] 余军, 张德平, 潘若生, 董泽华. 井下含硫环空液中P110油管钢应力腐蚀开裂的电化学噪声特征[J]. 金属学报, 2018, 54(10): 1399-1407.
[7] 刘峰, 王慷. 低合金钢TMCP中相变热力学/动力学相关性探讨*[J]. 金属学报, 2016, 52(10): 1326-1332.
[8] 卢云飞,董俊华,柯伟. SO42-对NiCu低合金钢在除氧NaHCO3溶液中腐蚀行为的影响[J]. 金属学报, 2015, 51(9): 1067-1076.
[9] 魏亮, 庞晓露, 高克玮. X65钢在含超临界CO2的NaCl溶液中腐蚀机制的讨论*[J]. 金属学报, 2015, 51(6): 701-712.
[10] 吴欣强, 谭季波, 徐松, 韩恩厚, 柯伟. 核级低合金钢高温水腐蚀疲劳机制及环境疲劳设计模型[J]. 金属学报, 2015, 51(3): 298-306.
[11] 陈文娟, 郝龙, 董俊华, 柯伟, 文怀梁. 模拟工业-海岸大气中pH值对Q235B钢腐蚀行为的影响*[J]. 金属学报, 2015, 51(2): 191-200.
[12] 徐平光,殷匠,张书彦. 充氢超高强度钢拉伸变形的原位中子衍射研究*[J]. 金属学报, 2015, 51(11): 1297-1305.
[13] 陈文娟, 郝龙, 董俊华, 柯伟, 文怀梁. 模拟工业-海岸大气中SO2对Q235B钢腐蚀行为的影响*[J]. 金属学报, 2014, 50(7): 802-810.
[14] 徐秋发, 庞晓露, 刘泉林, 高克玮. 低合金钢和碳钢在90 ℃地下水模拟溶液中的缝隙腐蚀*[J]. 金属学报, 2014, 50(6): 659-666.
[15] 房玉佩, 谢振家, 尚成嘉. 感应回火对1000 MPa级高强度低合金钢碳化物析出行为及韧性的影响[J]. 金属学报, 2014, 50(12): 1413-1420.