Please wait a minute...
金属学报  2015, Vol. 51 Issue (1): 77-84    DOI: 10.11900/0412.1961.2014.00364
  本期目录 | 过刊浏览 |
Pt对镍基单晶高温合金持久性能的影响
林惠文,刘纪德(),周亦胄,金涛,孙晓峰
INFLUENCE OF Pt ON THE CREEP RUPTURE PROPERTIES OF Ni-BASED SINGLE CRYSTAL SUPERALLOY
Huiwen LIN,Jide LIU(),Yizhou ZHOU,Tao JIN,Xiaofeng SUN
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(11041 KB)   HTML
摘要: 

研究了不同Pt含量的镍基单晶高温合金在1100 ℃, 180 MPa和1000 ℃, 310 MPa条件下的持久性能, 采用SEM和TEM等方法分析了Pt对合金持久变形组织和位错形态的影响. 结果表明, Pt略微降低了合金在1100 ℃, 180 MPa条件下的持久寿命, 较大降低了合金在1000 ℃, 310 MPa条件下的持久寿命. 不同Pt含量的合金在不同条件的持久断裂均表现为塑性断裂, 断口附近可以观察到大量的微孔洞和微裂纹. 不同Pt含量合金持久变形后均在g/g'界面上形成致密的位错网. Pt对合金持久性能影响的主要原因在于Pt促进了TCP相的形成, 而TCP相与基体界面吸收大量变形过程中产生的空位而导致孔洞形核, 随着变形的继续孔洞成为裂纹源.

关键词 Pt镍基单晶高温合金持久性能    
Abstract

The Ni-based single crystal superalloys are considered to be the major materials for advanced areo-engine blades. In order to improve the high temperature properties of Ni-based single crystal superalloys, many refractory elements are introduced into this kind of alloys. Recently Pt has been suggested to be the alloying elements of advanced Ni-based single crystal superalloys. However, there are no researches for the effects of Pt on creep rupture properties of advanced single crystal superalloys. In this work, the influence of Pt element on the creep rupture properties of a Re-containing single crystal superalloy was investigated. The high-temperature creep rupture properties of the Pt-containing Ni-based single crystal superalloy at 1100 ℃, 180 MPa and 1000 ℃, 310 MPa were investigated. The deformation microstructure and the morphology of dislocations were studied by SEM and TEM. The results show that the creep rupture life of Pt-containing superalloy decrease slightly at 1100 ℃, 180 MPa and decreased obviously at 1000 ℃, 310 MPa. The fracture models of different alloys are all ductile fracture, and many irregular microviods and microcracks can be observed in the fracture surfaces. After high temperature creep deformation, regular dislocation networks formed at the g/g' interfaces. The differences of creep rupture properties among those alloys are that Pt element may promote the formation of TCP phase, and the interface between the TCP phase and g matrix may be favorite sites of the initiation of microvoids and microcracks.

Key wordsPt    Ni-based single crystal superalloy    creep rupture property
    
基金资助:*国家自然科学基金项目U1037601以及国家重点基础研究发展计划项目2010CB631206资助
作者简介: 林慧文, 男, 1986年生, 硕士

引用本文:

林惠文,刘纪德,周亦胄,金涛,孙晓峰. Pt对镍基单晶高温合金持久性能的影响[J]. 金属学报, 2015, 51(1): 77-84.
Huiwen LIN, Jide LIU, Yizhou ZHOU, Tao JIN, Xiaofeng SUN. INFLUENCE OF Pt ON THE CREEP RUPTURE PROPERTIES OF Ni-BASED SINGLE CRYSTAL SUPERALLOY. Acta Metall Sin, 2015, 51(1): 77-84.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2014.00364      或      https://www.ams.org.cn/CN/Y2015/V51/I1/77

图1  高温持久试样示意图
图2  合金在1100 ℃, 180 MPa持久后的断口形貌
图3  合金在1000 ℃, 310 MPa持久后的断口形貌
图4  合金在1100 ℃, 180 MPa持久断裂后的纵截面微观组织
图5  合金在1000 ℃, 310 MPa持久断裂后的纵截面微观组织
图6  合金在1100 ℃, 180 MPa持久断裂后的位错网形貌
图7  合金在1000 ℃, 310 MPa持久断裂后的位错网形貌
表1  实验合金的名义成分
表2  不同Pt含量合金的持久寿命和延伸率
[1] Kearsey R M, Beddoes J C, Jaansalu K M, Thompson W T, Au P. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: TMS, 2004: 801
[2] Reed R C. Superalloys:Fundamentals and Applications. Cambride: Cambridge University Press, 2006: 147
[3] Cetel A D, Duhl D N. In: Reichman S, Duhl D N, Maurer G, Antolovich S, Lund C eds., Superalloys 1988, Warrendale: Minerals, Metals & Materials Soc, 1988: 235
[4] Walston W S, O'Hara K S, Ross E W, Pollock T M, Murphy W H. In: Kissmger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Warrendale: Minerals, Metals & Materials Soc, 1996: 27
[5] Erickson G L. In: Kissmger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Warrendale: Minerals, Metals & Materials Soc, 1996: 35
[6] Koizumi Y, Kobayashi T, Yokokawa T, Zhang J X, Osawa M, Harada H, Aoki Y, Arai M. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: Minerals, Metals & Materials Soc, 2004: 35
[7] Sato A, Harada H, Yokokawa T, Murakumo T, Koizumi Y, Kobayashi T, Imai H. Scr Mater, 2006; 54: 1679
[8] Yeh A C, Tin S. Metall Mater Trans, 2006; 37A: 2621
[9] Neumeier S, Pyczak F, Goeken M. In: Reed R C, Green K A, Caron P, Grabb T P, Fahrmann M G, Huron E S, Woodard S R eds., Superalloys 2008, Warrendale: Minerals, Metals & Materials Soc, 2008: 109
[10] Rae C M F, Karunaratne M S A, Small C J, Broomfield R W, Jones C N, Reed R C. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J eds., Superalloys 2000, Warrendale: TMS, 2000: 767
[11] O'hara K S, Walston W S, Ross E W, Darolia R. US Pat, 5482789, 1996
[12] Ofori A P, Rossouw C J, Humphreys C J. Acta Mater, 2005; 53: 97
[13] Carroll L J, Feng Q, Mansfield J F, Pollock T M. Metall Mater Trans, 2006; 37A: 2927
[14] Tin S, Yeh A C, Ofori A P, Reed R C, Babu S S, Miller M K. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: TMS, 2004: 735
[15] Ofori A P, Humphreys C J, Tin S, Jones C N. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: Minerals, Metals & Materials Soc, 2004: 787
[16] Reed R C, Yeh A C, Tin S, Babu S S, Miller M K. Scr Mater, 2004; 51: 327
[17] Murakami H, Honma T, Koizumi Y, Harada H. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Warrendale: Minerals, Metals & Materials Soc, 2000: 747
[18] Van Sluytman J S, La Fontaine A, Cairney J M, Pollock T M. Acta Mater, 2010; 58: 1952
[19] Yokokawa T, Osawa M, Nishida K, Kobayashi T, Koizumi Y, Harada H. Scr Mater, 2003; 49: 1041
[20] Murakami H, Koizumi Y, Yokokawa T, Yamabe M Y, Yamagata T, Harada H. Mater Sci Eng, 1998; A250: 109
[21] Van Sluytman J S, Suzuki A, Bolcavage A, Helmink R C, Ballard D L, Pollock T M. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S eds., Superalloys 2008, Warrendale: TMS, 2008: 499
[22] Heidloff A J, Van Sluytman J S, Pollock T M, Gleeson B. Metall Mater Trans, 2009; 40A: 1529
[23] Lin H W, Zhou Y Z, Zhang X, Jin T, Sun X F. Acta Metall Sin, 2013; 49: 1567 (林惠文, 周亦胄, 张 炫, 金 涛, 孙晓峰. 金属学报, 2013; 49: 1567)
[24] Zhang J X, Wang J C, Harada H, Koizumi Y. Acta Mater, 2005; 53: 4623
[25] Lin H W. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2013 (林慧文. 中国科学院金属研究所硕士学位论文, 沈阳, 2013)
[1] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[2] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[3] 张可, 孙新军, 张明亚, 李昭东, 叶晓瑜, 朱正海, 黄贞益, 雍岐龙. Ti-V-Mo复合微合金钢中(Ti, V, Mo)C在γ /α中沉淀析出的动力学[J]. 金属学报, 2018, 54(8): 1122-1130.
[4] 蒋成洋, 阳颖飞, 张正义, 鲍泽斌, 朱圣龙, 王福会. 一种Zr改性双相PtAl2+(Ni, Pt)Al涂层的制备及热腐蚀行为研究[J]. 金属学报, 2018, 54(4): 581-590.
[5] 张宇, 王清, 董红刚, 董闯, 张洪宇, 孙晓峰. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900 ℃下1000 h的长期时效行为[J]. 金属学报, 2018, 54(4): 591-602.
[6] 郭静, 李金国, 刘纪德, 黄举, 孟祥斌, 孙晓峰. 低偏析异质籽晶制备单晶高温合金的籽晶熔合区形成机制研究[J]. 金属学报, 2018, 54(3): 419-427.
[7] 马殿国,王英敏,李艳辉,张伟. Co含量对熔体快淬Fe55-xCoxPt15B30合金的组织结构与磁性能的影响[J]. 金属学报, 2017, 53(5): 609-614.
[8] 王博,张军,潘雪娇,黄太文,刘林,傅恒志. W对第三代镍基单晶高温合金组织稳定性的影响[J]. 金属学报, 2017, 53(3): 298-306.
[9] 宋鹏, 陈榕, 冯晶, 吕建国, 陆建生. 镍基合金表面Pt改性铝化物涂层的初期Al2O3微观结构分析[J]. 金属学报, 2017, 53(11): 1504-1510.
[10] 杨永,王昭东,李天瑞,贾涛,李小琳,王国栋. 一种第二相析出-温度-时间曲线计算模型的建立[J]. 金属学报, 2017, 53(1): 123-128.
[11] 濮晟,谢光,王莉,潘智毅,楼琅洪. Re和W对铸态镍基单晶高温合金再结晶的影响*[J]. 金属学报, 2016, 52(5): 538-548.
[12] 郁峥嵘,丁贤飞,曹腊梅,郑运荣,冯强. 第二、三代镍基单晶高温合金含Hf过渡液相连接*[J]. 金属学报, 2016, 52(5): 549-560.
[13] 王玉敏,李双明,钟宏,傅恒志. 定向凝固DD6单晶高温合金枝晶组织均匀性研究[J]. 金属学报, 2015, 51(9): 1038-1048.
[14] 濮晟, 谢光, 郑伟, 王栋, 卢玉章, 楼琅洪, 冯强. W和Re对固溶态镍基单晶高温合金变形和再结晶的影响*[J]. 金属学报, 2015, 51(2): 239-248.
[15] 童锦艳,冯微,付超,郑运荣,冯强. GH4033合金短时超温后的显微组织损伤及力学性能[J]. 金属学报, 2015, 51(10): 1242-1252.