Please wait a minute...
金属学报  2015, Vol. 51 Issue (1): 85-92    DOI: 10.11900/0412.1961.2014.00351
  本期目录 | 过刊浏览 |
电解抛光态690TT合金在顺序溶氢/溶氧的高温高压水中表面氧化膜结构分析
张志明1,2, 王俭秋1,2(), 韩恩厚1,2, 柯伟1,2
1 中国科学院金属研究所核用材料与安全评价重点实验室, 沈阳 110016
2 中国科学院金属研究所辽宁省核电材料安全与评价技术重点实验室, 沈阳 110016
ANALYSIS OF SURFACE OXIDE FILM FORMED ON ELETROPOLISHED ALLOY 690TT IN HIGH TEMPERATURE AND HIGH PRESSURE WATER WITH SEQUENTIALLY DISSOLVED HYDROGEN AND OXYGEN
ZHANG Zhiming1,2, WANG Jianqiu1,2(), HAN En-Hou1,2, KE Wei1,2
1 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

张志明, 王俭秋, 韩恩厚, 柯伟. 电解抛光态690TT合金在顺序溶氢/溶氧的高温高压水中表面氧化膜结构分析[J]. 金属学报, 2015, 51(1): 85-92.
Zhiming ZHANG, Jianqiu WANG, En-Hou HAN, Wei KE. ANALYSIS OF SURFACE OXIDE FILM FORMED ON ELETROPOLISHED ALLOY 690TT IN HIGH TEMPERATURE AND HIGH PRESSURE WATER WITH SEQUENTIALLY DISSOLVED HYDROGEN AND OXYGEN[J]. Acta Metall Sin, 2015, 51(1): 85-92.

全文: PDF(4212 KB)   HTML
摘要: 

将电解抛光态690TT合金样品在325 ℃, 15.6 MPa,含1500 mg/L B, 2.3 mg/L Li, 2.5 mg/L H2的高温高压水中连续浸泡720 h后, 取出一半样品用于腐蚀产物的分析, 其余样品继续在含2.0 mg/L O2的该高温高压水中连续浸泡720 h. 采用SEM, GIXRD和TEM分析了在上述2种条件下样品表面生长的氧化膜的微观结构. 结果表明, 电解抛光态690TT合金在单一溶氢的高温高压水中表面生长的氧化膜具有双层结构: 外层是分散的富含Ni和Fe大颗粒氧化物和富含Ni的疏松的针状氧化物; 内层是近连续的富含Cr的氧化物; 内外层氧化物均具有尖晶石结构. 在溶氢/溶氧的溶液中连续浸泡后, 样品表面生长的氧化膜也具有双层结构: 外层的形貌、化学组成和物相结构与在单一溶氢条件下生长的氧化膜相似, 仅针状氧化物的长度明显增加; 而氧化膜内层变成了纳米尺寸的NiO. 后期溶解氧扩大了电位-pH图中含Ni的氧化物稳定存在的相区, 促进了外层富含Ni的针状氧化物的快速生长; 更加重要的是, 溶解氧提高了含Fe和Cr氧化物的腐蚀电位, 促进了在溶氢条件下生长的内层富Cr氧化物的溶解, 破坏了氧化膜的保护性结构, 提高了电解抛光态690TT合金的腐蚀速度. 在一回路溶氢/溶氧连续浸泡过程中, 电解抛光处理并不能降低690TT合金的腐蚀速度.

关键词 690TT合金氧化膜氢水化学氧水化学保护性微观结构    
Abstract

The electropolished (EP) alloy 690TT samples were first oxidized in the simulated B and Li containing primary water with 2.5 mg/L H2 at 325 ℃ and 15.6 MPa for 720 h, and then half of the samples were continuously immersed in this solution with 2.0 mg/L O2 for another 720 h. The microstructures and chemical composition of the oxide films formed under the above two conditions were analyzed. The results show that the dual layered oxide film formed under the single hydrogen water chemistry is mainly composed of spinel oxides. The outer layer is composed of big oxide particles rich in Ni and Fe and the underlying loose needle-like oxides rich in Ni. The inner layer is continuous Cr-rich oxides. The oxide film formed on EP alloy 690TT under the hydrogen/oxygen water chemistry also shows a dual layered structure. The surface morphology and chemical composition of the outer layer are similar to the oxide film formed under the hydrogen water chemistry. However, the inner layer is changed to the nano-sized NiO. The stable phase region in the potential-pH diagram for the Ni oxides is enlarged by the later dissolved oxygen. As a result, the oxygen promotes the fast growth of the outer needle-like oxides rich in Ni. Further, the oxygen promotes the dissolution of the inner Cr-rich oxides formed under the hydrogen water chemistry and increases the corrosion rate of the EP alloy 690TT. Electropolishing treatment can not reduce the corrosion rate of alloy 690TT in the simulated primary water with sequentially dissolved hydrogen and oxygen.

Key wordsalloy 690TT    oxide film    hydrogen water chemistry    oxygen water chemistry    protective microstructure
    
ZTFLH:  TG172.82  
基金资助:*国家重点基础研究发现计划项目2011CB610502, 国家科技重大专项项目2011ZX06004-009和国家自然科学基金项目51025104资助
作者简介: null

张志明, 男, 1983年生, 副研究员, 博士

图1  电解抛光态690TT合金在溶氢和溶氢/溶氧2种浸泡条件下表面氧化物的SEM像
图2  电解抛光态690TT合金在溶氢和溶氢/溶氧2种浸泡条件下表面氧化物的GIXRD谱
Immersion condition Ni Cr Fe
DH 38.74 7.93 53.33
DH/DO 45.01 7.21 47.77
表1  图1中所示氧化膜表面大颗粒氧化物的化学组成
图3  电解抛光态690TT合金在溶氢的高温高压水中浸泡720 h后表面氧化膜的截面TEM像
Position Ni Fe Cr
1 24.24 72.87 2.89
2 62.63 21.50 15.87
3 13.82 12.38 73.80
4 59.44 11.05 29.50
表2  图3a中位置1~4的化学组成分析
图4  电解抛光态690TT合金在溶氢/溶氧的高温高压水中浸泡后表面氧化膜的截面TEM像
图5  图4中位置1~3的SAED谱
[1] Dutaa R S. J Nucl Mater, 2009; 393: 343
[2] Li Y C,Zhu Z P,Yang D W,Li J Y,et al.Control of Water Chemistry in Nuclear Power Plants. Beijing: Chemical Industry Press, 2008: 66
[2] (李宇春,朱志平,杨道武,李敬业等. 核电站水化学控制工况. 北京: 化学工业出版社, 2008: 66)
[3] Yu G P, Yao H C. Corrosion, 1990; 46: 391
[4] Ziemniak S E, Hanson M, Sander P C. Corros Sci, 2008; 50: 2465
[5] Zhang Z M, Wang J Q, Han E H, Ke W. Acta Metall Sin, 2011; 47: 831
[5] (张志明, 王俭秋, 韩恩厚, 柯 伟. 金属学报, 2011; 47: 831)
[6] Zhang Z M, Wang J Q, Han E H, Ke W. Acta Metall Sin, 2011; 47: 823
[6] (张志明, 王俭秋, 韩恩厚, 柯 伟. 金属学报, 2011; 47: 823)
[7] Zhang Z M, Wang J Q, Han E H, Ke W. J Mater Sci Technol, 2012; 28: 353
[8] Yun G C,Cheng X Z. Water Chemistry of Pressured Water Reactors. Harbin: Harbin Engineering University Press, 2009: 52
[8] (云桂春,成徐州. 压水反应堆水化学. 哈尔滨: 哈尔滨工程大学出版社, 2009: 52)
[9] Dan T C, Shoji T, Lu Z P, Sakaguchi K, Wang J Q, Han E H, Ke W. Corros Sci, 2010; 52: 1228
[10] Zhang Z M, Wang J Q, Han E H, Ke W. Corros Sci, 2011; 53: 3623
[11] Zhang Z M, Wang J Q, Han E H, Ke W. In: Peng Q J ed., Proc 3rd Int Symp on Materials and Reliability in Nuclear Power Plants, Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2013: 25
[12] Zhang Z M, Wang J Q, Han E H, Ke W. J Mater Sci Technol, 2014; DOI: 10.1016/j.jmst.2014.09.002
[13] Sennour M, Marchetti L, Martin F, Perrin S, Molins R, Pijolat M. J Nucl Mater, 2010; 402: 147
[14] Marchetti L, Perrin S, Raquet O, Pijolat M. Mater Sci Forum, 2008; 595-598: 529
[15] Lefaix-Jeuland H, Marchetti L, Perrin S, Pijolat M, Sennour M, Molins R. Corros Sci, 2011; 53: 3914
[16] Ziemniak S E, Hanson M. Corros Sci, 2006; 48: 498
[17] Terachi T, Totsuka N, Yamada T, Nakagawa T, Deguchi H, Horiuchi M, Oshitani M. J Nucl Sci Technol, 2003; 40: 509
[18] Staehle R W, Gorman J A. Corrosion, 2003; 59: 931
[19] Liu X H, Wu X Q, Han E H. Corros Sci, 2011; 53: 3337
[20] Kim Y J. Corrosion, 2000; 56: 389
[21] Li M S. High Temperature Corrosion of Metals. Beijing: Metallurgical Industry Press, 2001: 162
[21] (李美栓. 金属的高温腐蚀. 北京: 机械工业出版社, 2001: 162)
[22] Rebak R B, Smialowska Z S. Corros Sci, 1996; 38: 971
[1] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[2] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[3] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[4] 孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.
[5] 林晓冬, 马海滨, 任啟森, 孙蓉蓉, 张文怀, 胡丽娟, 梁雪, 李毅丰, 姚美意. Fe13Cr5Al4Mo合金在高温高压水环境中的腐蚀行为[J]. 金属学报, 2022, 58(12): 1611-1622.
[6] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[7] 包飞洋, 李艳芬, 王光全, 张家榕, 严伟, 石全强, 单以银, 杨柯, 许斌, 宋丹戎, 严明宇, 魏学栋. ODS钢在600700 ℃静态Pb-Bi共晶中的腐蚀行为及机理[J]. 金属学报, 2020, 56(10): 1366-1376.
[8] 张笑一, 尚海龙, 马冰洋, 李荣斌, 李戈扬. 镀膜Al箔钎料对AlN陶瓷的钎焊[J]. 金属学报, 2018, 54(4): 575-580.
[9] 杨忠波,赵文金,程竹青,邱军,张海,卓洪. Nb含量对 Zr-xNb-0.4Sn-0.3Fe合金耐腐蚀性能的影响[J]. 金属学报, 2017, 53(1): 47-56.
[10] 王家贞,王俭秋,韩恩厚. 800合金在300 ℃ NaOH和ETA溶液中的腐蚀行为*[J]. 金属学报, 2016, 52(5): 599-606.
[11] 欧美琼,刘扬,查向东,马颖澈,程乐明,刘奎. 一种新型镍基合金在超临界多种离子共存环境下的腐蚀行为*[J]. 金属学报, 2016, 52(12): 1557-1564.
[12] 王俭秋, 黄发, 柯伟. Inconel 690TT和Incoloy 800MA蒸汽发生器管材在高温高压水中的腐蚀行为研究*[J]. 金属学报, 2016, 52(10): 1333-1344.
[13] 苟少秋,周邦新,谢世敬,徐龙,姚美意,李强. Zr-4合金在LiOH水溶液中腐蚀时氧化膜生长各向异性的研究*[J]. 金属学报, 2015, 51(8): 993-1000.
[14] 彭以超, 张麦仓, 杜晨阳, 董建新. 服役态Cr35Ni45Nb合金高温真空渗碳行为及相演化机理研究[J]. 金属学报, 2015, 51(1): 11-20.
[15] 章海霞, 李中奎, 周廉, 许并社, 王永祯. 氧化膜结构及内应力对新锆合金腐蚀机理的影响[J]. 金属学报, 2014, 50(12): 1529-1537.