Please wait a minute...
金属学报  2014, Vol. 50 Issue (12): 1520-1528    DOI: 10.11900/0412.1961.2014.00263
  本期目录 | 过刊浏览 |
Ni添加对TiB2/TiB钛基复合涂层组织与力学性能的影响
林英华, 雷永平(), 符寒光, 林健
北京工业大学材料科学与工程学院, 北京 100124
EFFECT OF Ni ADDITION ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF TiB2/TiB TITANIUM MATRIX COMPOSITE COATINGS
LIN Yinghua, LEI Yongping(), FU Hanguang, LIN Jian
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124
引用本文:

林英华, 雷永平, 符寒光, 林健. Ni添加对TiB2/TiB钛基复合涂层组织与力学性能的影响[J]. 金属学报, 2014, 50(12): 1520-1528.
Yinghua LIN, Yongping LEI, Hanguang FU, Jian LIN. EFFECT OF Ni ADDITION ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF TiB2/TiB TITANIUM MATRIX COMPOSITE COATINGS[J]. Acta Metall Sin, 2014, 50(12): 1520-1528.

全文: PDF(10890 KB)   HTML
摘要: 

以TiB2粉末和Ni+TiB2粉末混合物分别作为预置层, 采用激光原位技术在钛合金表面制备出2类复合涂层. 运用XRD, SEM, EPMA与硬度计等实验手段, 对合成的复合涂层进行测试分析. 结果表明, Ni添加之前, 可获得TiB2颗粒与TiB短纤维增强钛基复合涂层, 但涂层表面成型质量较差. Ni添加之后, 既可改善涂层的表面成型质量, 又可生成bcc结构的NiTi合金填充在TiB2颗粒与TiB短纤维周围. Ni的添加还可使TiB2颗粒得以细化, 且涂层中出现了b-Ti基. Ni的添加使涂层的显微硬度值降低, 但涂层的断裂韧性得以提高. 钛基复合涂层主要通过颗粒脱粘与短纤维断裂偏移方式使裂纹发生偏转来提高涂层的断裂韧性.

关键词 激光技术激光熔覆TC4钛合金TiBTiB2    
Abstract

Titanium alloys have been known as useful materials for their superior mechanical properties, low density and high specific strength. However, the application of conventional titanium alloys on engine parts of airplane is limited by their poor wear resistance, low fatigue strength and low hardness. Particles reinforced titanium matrix composites have attracted extensive investigation in material science and engineering. Mechanical properties can be improved by reinforcing the loaded outer layer of Ti with ceramic particles. TiB and TiB2 are considered as the excellent ceramic reinforced particles for their compatible physical and thermodynamic properties, high hardness and Young's modulus of elasticity. However, TiB2 has high brittleness. The intermetallic compound NiTi, well-known for its shape memory effect and pseudo-elasticity, is one of the rarely few intermetallic compounds having excellent combination of high strength, ductility and toughness as well as excellent wear resistance and fabrication processing properties. An in situ TiB/TiB2 structured ceramic materials as the reinforcing phase and NiTi intermetallic phase as the matrix would be expected to have an outstanding combination of high hardness and toughness. To investigate the microstructure and properties of the cladded layers, two types of composites were prepared by laser cladding powders containing TiB2 and Ni+TiB2 as a preset level on the surface of titanium alloy. The composite coatings were analyzed by XRD, SEM, EPMA, micro hardness tester and brinell hardness. The results showed that TiB2 particulate and TiB short fiber reinforced titanium matrix composite coating were obtained, which had poor quality of coating shape when Ni was not added. The coating was mainly composed of TiB2, TiB, Ti and NiTi phase when Ni was added and surface coating quality was improved and the bcc structure of NiTi alloy was filled with TiB2 particulate and TiB short fiber surrounding. The coating was coarse with particle size of TiB2 at 3~5 μm when Ni was not added, while it contained fine particles of TiB2 with particle size of 0.5~3 μm and b-Ti base appeared when Ni was added. The micro-hardness of the coating was reduced when Ni was added, but the fracture toughness of the coating increased. The mechanism of toughening was discussed based on fracture behaviors. Fracture toughness of titanium matrix composite coatings were improved mainly through particle debonding and short fiber breakage by the offset resulting in crack deflection.

Key wordslaser technique    laser cladding    TC4 titanium alloy    TiB    TiB2
    
ZTFLH:  TN249  
基金资助:*国家自然科学基金资助项目51275006
作者简介: null

林英华, 男, 1985年生, 博士生

图1  Ni添加前后涂层的横截面形貌
图2  Ni添加前后涂层表层的XRD谱
图3  Ni添加前在不同激光功率下涂层中部横截面的显微组织
Position Ti B
1 33.5 66.5
2 35.4 64.6
3 40.8 59.2
4 33.8 66.2
5 58.3 41.7
6 70.6 29.4
7 56.5 43.5
8 33.4 66.6
9 57.4 42.6
10 60.6 39.4
11 57.2 42.8
12 58.3 41.7
表1  图3中组织相的EPMA分析结果
图4  Ni添加后在不同激光功率下涂层中部横截面的显微组织
Position Ti B
1 33.1 66.9
2 59.6 40.4
3 34.8 65.2
4 56.7 43.3
5 34.3 65.7
6 40.2 59.8
7 55.1 44.9
8 56.9 43.1
9 58.3 41.7
10 36.2 63.8
11 34.2 65.8
12 57.6 42.4
表2  图4中组织相EPMA分析结果
图5  Ni∶TiB2=1∶1的涂层的SEM像及EPMA面扫描结果
图6  激光功率为2.5 kW, 扫描速率为6 mm/s下涂层的显微硬度分析结果
图7  激光功率为2.5 kW, 扫描速率为6 mm/s下涂层表层在30 kg载荷压痕后的形貌
图8  激光功率为2.5 kW, 扫描速率为6 mm/s下涂层底部在30 kg载荷压痕后的形貌
图9  激光功率为2 kW, 扫描速率为6 mm/s下未加Ni涂层在30 kg载荷压痕后的形貌
图10  激光功率为2.5 kW, 扫描速率为6 mm/s下添加Ni涂层在30 kg载荷压痕后的形貌
[1] Leyens C,translated by Chen Z H. Titanium and Titanium Alloy. Beijing: Chemical Industry Press, 2005: 8, 193
[1] (Leyens C著,陈振华译. 钛与钛合金. 北京: 化学工业出版社, 2005: 8, 193)
[2] Xu B S. Materials Surface Engineering. Harbin: Harbin Institute of Technology Press, 2005: 24
[2] (徐滨士. 材料表面工程. 哈尔滨: 哈尔滨工业大学出版社, 2005: 24)
[3] Lee H, Mall S, William Y A. Mater Sci Eng, 2006; A420: 72
[4] Xu J, Liu W J. Wear, 2006; 260: 486
[5] Wang W L, Chao M J, Wang D S. Chin J Lasers, 2007; 34: 277
[5] (王文丽, 晁明举, 王东升. 中国激光, 2007; 34: 277)
[6] Yang S, Zhong M L. Mater Sci Eng, 2003; A343: 57
[7] Indrani S, Gopinath K, Ranjan D. Acta Mater, 2010; 58: 6799
[8] Guo X L, Wang L Q, Wang M M. Acta Mater, 2012; 60: 2656
[9] Lu L, Lai M O, Wang H Y. J Mater Sci, 2000; 35: 241
[10] Wang Z X, He Z Y, Wang Y Q, Liu X P, Tang B. Mater Sci Forum, 2011; 687: 759
[11] Wang Z X, He Z Y, Wang Y Q, Liu X P, Tang B. Appl Surf Sci, 2011; 257: 10272
[12] Liang Y N, Li S Z, Jin Y B. Wear, 1996; 198: 236
[13] Anstis G R, Chantikul P, Lawn B R. J Am Ceram Soc, 1981; 64: 533
[14] Zheng Q G. Advanced Laser Manufacture. Wuhan: Huazhong University of Science and Technology Press, 2002: 3
[14] (郑启光. 激光先进制造技术. 武汉: 华中科技大学出版社, 2002: 3)
[15] Krishna V G,Prasad Y V R K, Birla N C, Rao G S. J Mater Process Technol, 1997; 71: 377
[16] Yang Z F. PhD Dissertation, Shanghai Jiao Tong University, 2007
[16] (杨志峰. 上海交通大学博士学位论文, 2007)
[17] De Graef M, Loefvander J P A, Levi C G. Acta Metall Mater, 1991; 39: 2381
[18] Kawabata K, Sato E, Kuribayashi K. Scr Mater, 2004; 50: 523
[19] Lin Y H, Chen Z Y, Li Y H, Zhu W H, Wen X D, Wang X L. Infared Laser Eng, 2012; 41: 2694
[19] (林英华, 陈志勇, 李月华, 朱卫华, 文向东, 王新林. 红外与激光工程, 2012; 41: 2694)
[20] Tian H, Geng L, Ni D R, Meng Q W. Rare Met Mater Eng, 2007; 363: 420
[20] (田 浩, 耿 林, 倪丁瑞, 孟庆武.稀有金属材料与工程, 2007; 363: 420)
[21] Varna J, Paris F, Cano J C. Compos Sci Technol, 1997; 57: 523
[22] Gleiter H. Nano Mater, 1995; 6: 3
[23] Gorsse S, Miracle D B. Acta Mater, 2003; 51: 2427
[24] Banerjee R, Genc A, Hill D, Collins P C, Fraser H L. Scr Mater, 2005; 53: 1433
[25] Nandwana P, Hwang J Y, Koo M Y, Tiley J, Hong S H, Banerjee R. Mater Lett, 2012; 83: 202
[1] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[2] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[3] 冯凯, 郭彦兵, 冯育磊, 姚成武, 朱彦彦, 张群莉, 李铸国. 激光熔覆高强韧铁基涂层精细组织调控与性能研究[J]. 金属学报, 2022, 58(4): 513-528.
[4] 王浩伟, 赵德超, 汪明亮. 原位自生TiB2/Al基复合材料的腐蚀防护技术研究现状[J]. 金属学报, 2022, 58(4): 428-443.
[5] 赵万新, 周正, 黄杰, 杨延格, 杜开平, 贺定勇. FeCrNiMo激光熔覆层组织与摩擦磨损行为[J]. 金属学报, 2021, 57(10): 1291-1298.
[6] 童文辉, 张新元, 李为轩, 刘玉坤, 李岩, 国旭明. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响[J]. 金属学报, 2020, 56(9): 1265-1274.
[7] 张林, 郭晓, 高建文, 邓安元, 王恩刚. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响[J]. 金属学报, 2020, 56(9): 1239-1246.
[8] 张煜, 娄丽艳, 徐庆龙, 李岩, 李长久, 李成新. 超高速激光熔覆镍基WC涂层的显微结构与耐磨性能[J]. 金属学报, 2020, 56(11): 1530-1540.
[9] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[10] 王宝刚, 易红亮, 王国栋, 骆智超, 黄明欣. 原位生成铁基复合材料中TiB2的三维形貌重构[J]. 金属学报, 2019, 55(1): 133-140.
[11] 任建强, 梁淑华, 姜伊辉, 杜翔. 原位(TiB2-TiB)/Cu复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 126-132.
[12] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[13] 林英华, 袁莹, 王梁, 胡勇, 张群莉, 姚建华. 电磁复合场对Ni60合金凝固过程中显微组织和裂纹的影响[J]. 金属学报, 2018, 54(10): 1442-1450.
[14] 张丽丽, 江鸿翔, 赵九洲, 李璐, 孙倩. 溶质Ti对Al-Ti-B中间合金细化Al影响的新认识:TiB2粒子的动力学行为及溶质Ti的影响[J]. 金属学报, 2017, 53(9): 1091-1100.
[15] 刘国怀, 李天瑞, 徐莽, 付天亮, 李勇, 王昭东, 王国栋. 累积叠轧TC4钛合金的组织演化与力学性能[J]. 金属学报, 2017, 53(9): 1038-1046.