Please wait a minute...
金属学报  2014, Vol. 50 Issue (11): 1343-1349    DOI: 10.11900/0412.1961.2014.00225
  本期目录 | 过刊浏览 |
应力松弛方法研究2种HR3C耐热钢的高温蠕变行为
曹铁山1, 方旭东2, 程从前1, 赵杰1()
1 大连理工大学材料科学与工程学院, 大连 116085
2 山西太钢不锈钢股份有限公司, 太原 030003
CREEP BEHAVIOR OF TWO KINDS OF HR3C HEAT RESISTANT STEELS BASED ON STRESS RELAXATION TESTS
CAO Tieshan1, FANG Xudong2, CHENG Congqian1, ZHAO Jie1()
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116085
2 Shanxi Taigang Stainless Steel Co. Ltd., Taiyuan 030003
引用本文:

曹铁山, 方旭东, 程从前, 赵杰. 应力松弛方法研究2种HR3C耐热钢的高温蠕变行为[J]. 金属学报, 2014, 50(11): 1343-1349.
Tieshan CAO, Xudong FANG, Congqian CHENG, Jie ZHAO. CREEP BEHAVIOR OF TWO KINDS OF HR3C HEAT RESISTANT STEELS BASED ON STRESS RELAXATION TESTS[J]. Acta Metall Sin, 2014, 50(11): 1343-1349.

全文: PDF(2213 KB)   HTML
摘要: 

采用应力松弛方法研究了2种不同晶粒大小HR3C耐热钢的初始态试样和时效态试样的高温蠕变变形行为, 并分析了其微观组织特点. 结果表明, 尽管2种HR3C耐热钢的化学成分相近, 但其蠕变行为有明显差异. 相同条件下, 晶粒较粗的HR3C耐热钢初始态与时效态的蠕变速率均低于晶粒较细的HR3C耐热钢, 具有较高的蠕变抗力. 2种HR3C耐热钢经过高温时效处理后, 蠕变抗力均明显降低. 晶粒较细小的HR3C钢在高温时效后其应力指数(n)与蠕变表观激活能(Q)的降低幅度更加显著, 表明晶粒较细的HR3C耐热钢的蠕变抗力的稳定性低于晶粒较粗的HR3C耐热钢.

关键词 HR3C耐热钢应力松弛蠕变    
Abstract

Rupture life is a main property for a material using at high-temperature condition. Usually, the rupture life is gained from creep rupture test. As creep and stress relaxation are two main behaviors for a material served in high-temperature environment, it is important to work out the interrelationship through which one of the two behaviors can be deduced from the other one. Recently, a number of researchs have taken stress relaxation test to replace creep rupture test on studying the creep behavior, and furthermore predicting the rupture life and the stress relaxation test is proved to be superior to the traditional creep rupture test for its short time, small at damage, abundant of information and so on. In this work, the stress relaxation test was used to analyze the creep behavior of two HR3C heat resistant steels with different grain sizes. Additionally, considering the change of microstructure during serve period, the aged HR3C steel was used to compare with as-received HR3C steel for studying the aging effects on the creep behavior. Furthermore, the creep behavior was correlated to their microstructure characteristics. The result was shown that the creep behaviors of two HR3C heat resistant steels varied significantly in spite of their similarity in chemical composition. The coarse grained HR3C steel had lower creep rate, larger stress exponent, greater activation energy and higher creep resistance than that of fine grained HR3C steel for both as-received one and aged one. The long-term aging process damaged the microstructures of two HR3C steels, increased aged HR3C steel's creep rate, lowered stress exponent and activation energy and reduced creep resistance. And the damaging effects on the coarse grained HR3C steel were larger than that on fine grained HR3C steel, which meant the coarse grained HR3C steel had much more stable creep resistance than that of fine grained HR3C steel.

Key wordsHR3C heat resistant steel    stress relaxation    creep
收稿日期: 2014-06-26     
ZTFLH:  TG132.33  
基金资助:*国家自然科学基金项目51171037 和 51134013资助
作者简介: null

曹铁山, 男, 1985年生, 博士

Steel Mn Si P S Cr Ni Nb Fe
Standard ≤2.00 ≤0.75 ≤0.003 ≤0.003 24.00~26.00 17.00~23.00 0.20~0.60 Bal.
F-HR3C 1.30 0.32 0.029 0.006 24.91 19.78 0.390 Bal.
C-HR3C 1.16 0.39 0.014 0.003 25.22 19.96 0.305 Bal.
表1  HR3C耐热钢的标准成分与实际化学成分
图1  2种HR3C耐热钢的初始态试样的微观组织
图2  时效后2种HR3C钢的微观组织
图3  2种HR3C耐热钢的高温应力松弛曲线
图4  松弛曲线转化后的2种HR3C钢的蠕变速率-应力曲线
图5  相同状态2种HR3C钢的蠕变速率-应力关系对比
图6  2种HR3C耐热钢的应力指数n
图7  2种HR3C钢的蠕变表观激活能Q
图8  不同温度实验的归一化结果
[1] Sha J J, Park J S, Hinoki T, Kohyama A. Mech Mater, 2007; 39: 175
[2] Zhao J. Statistical Analysis and Reliability Prediction on the Creep Rupture Life of Heat Resistant Steel. Beijing: Science Press, 2011: 8
[2] (赵 杰. 耐热钢持久性能的统计分析及可靠性预测. 北京: 科学出版社, 2011: 8)
[3] Dotsenko V I. Phys Stat Sol, 1979; 93B: 13
[4] Woodford D A. JSME Int J, 2002; 45A: 98
[5] Ek C G, Hagström B, Kubát J, Rigdahl M. Rheol Acta, 1986; 25: 534
[6] Woodford D A, Wereszczak A A, Bakker W T. J Eng Gas Turbines Power, 2000; 122: 206
[7] Holm A, Konstantin N. Int J Modern Phys, 2008; 22B: 5413
[8] Chandler H D. Mater Sci Eng, 2010; A527: 6219
[9] Beddoes J. J Strain Anal Eng Des, 2011; 46: 416
[10] Zhan L H, Yang L. J Plastic Eng, 2013; 20: 126
[10] (湛利化, 阳 凌. 塑性工程学报, 2013; 20: 126)
[11] Guo J Q, Xuan F Z, Wang Z D, Tu S D. Proc Chin Soc Electr Eng, 2009; 29: 92
[11] (郭进全, 轩福贞, 王正东, 涂善东. 中国电机工程学报, 2009; 29: 92)
[12] Raghavender R G,Gupta O P,Pradhan B. Int J Pressure Vessels Piping, 2011; 88: 65
[13] Li T J, Liu F G, Fan C X, Yao B Y. Hot Work Technol, 2010; 39(14): 43
[13] (李太江, 刘福广, 范长信, 姚兵印. 热加工工艺, 2010; 39(14): 43)
[14] Liu J W, Luo C P, Xiao X L, Chen H X. Acta Metall Sin, 2002; 38: 127
[14] (刘江文, 罗承萍, 肖晓玲, 陈和兴. 金属学报, 2002; 38: 127)
[15] Iseda A, Okada H, Semba H, Igarashi M. Energy Mater, 2007; 2: 199
[16] Guo J Q, Xuan F Z, Wang Z D, Tu S D. Nucl Power Eng, 2009; 30(4): 9
[16] (郭进全, 轩福贞, 王正东, 涂善东. 核动力工程, 2009; 30(4): 9)
[17] Zhu Z, Zhang L W, Gu S D. Chin J Nonferrous Met, 2012; 22: 1063
[17] (朱 智, 张立文, 顾森东. 中国有色金属学报, 2012; 22: 1063)
[18] Fang Y Y, Zhao J, Li X N. Acta Metall Sin, 2010; 46: 844
[18] (方园园, 赵 杰, 李晓娜. 金属学报, 2010; 46: 844)
[19] Fang Y Y. Master Thesis, Dalian University of Technology, 2010
[19] (方园园. 大连理工大学硕士学位论文, 2010)
[20] Tan J, Li C, Sun C, Ying S H, Lian S S, Kan X W, Feng K Q. Acta Metall Sin, 2009; 45: 173
[20] (谭 军, 李 聪, 孙 超, 应诗浩, 连姗姗, 阚细武, 冯可芹. 金属学报, 2009; 45: 173)
[21] Yan W Z, Gao H S, Yue Z F. Rare Met Mater Eng, 2013; 42: 1250
[21] (闫五柱, 高行山, 岳珠峰. 稀有金属材料与工程, 2013; 42: 1250)
[22] Zhang J S. High Temperauture Deformation and Fracture of Materials. Beijing: Science Press, 2007: 56
[22] (张俊善. 材料的高温变形与断裂. 北京: 科学出版社, 2007: 56)
[23] Rothman S J, Nowicki L J, Murch G E. J Phys, 1980; 10F: 383
[24] Ruano O A, Wadsworth J, Sherby O D. J Mater Sci, 1985; 20: 3735
[25] Kong Q P, Dai Y. Mater Sci Prog, 1988; 2: 1
[25] (孔庆平, 戴 勇. 材料科学进展, 1988; 2: 1)
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[4] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[5] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[6] 彭子超, 刘培元, 王旭青, 罗学军, 刘健, 邹金文. 不同服役条件下FGH96合金的蠕变特征[J]. 金属学报, 2022, 58(5): 673-682.
[7] 杨志昆, 王浩, 张义文, 胡本芙. Ta含量对镍基粉末高温合金高温蠕变变形行为和性能的影响[J]. 金属学报, 2021, 57(8): 1027-1038.
[8] 张倪侦, 马昕迪, 耿川, 穆永坤, 孙康, 贾延东, 黄波, 王刚. Ag元素添加对Cu-Zr-Al基金属玻璃纳米压痕行为的影响[J]. 金属学报, 2021, 57(4): 567-574.
[9] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[10] 郭倩颖, 李彦默, 陈斌, 丁然, 余黎明, 刘永长. 高温时效处理对S31042耐热钢组织和蠕变性能的影响[J]. 金属学报, 2021, 57(1): 82-94.
[11] 刘天, 罗锐, 程晓农, 郑琦, 陈乐利, 王茜. 形成Al2O3表层的奥氏体不锈钢加速蠕变实验研究[J]. 金属学报, 2020, 56(11): 1452-1462.
[12] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[13] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[14] 江河,董建新,张麦仓,姚志浩,杨静. 服役条件下镍基高温合金应力松弛微观机制[J]. 金属学报, 2019, 55(9): 1211-1220.
[15] 史俊勤,孙琨,方亮,许少锋. 含水条件下单晶Cu的应力松弛及弹性恢复[J]. 金属学报, 2019, 55(8): 1034-1040.