Please wait a minute...
金属学报  2014, Vol. 50 Issue (11): 1393-1402    DOI: 10.11900/0412.1961.2014.00200
  本期目录 | 过刊浏览 |
Fe-Bi-Mn三元合金多相相变-扩散体系中易切削相析出规律的数值研究
王哲1, 王发展1,2(), 何银花1, 王欣1, 马姗2, 王辉绵3
1 西安建筑科技大学材料与矿资学院, 西安 710055
2 西安建筑科技大学机电工程学院, 西安 710055
3 山西太钢不锈钢股份有限公司技术中心, 太原 030003
NUMERICAL STUDY ON FREE-CUTTING PHASE PRECIPITATION BEHAVIOR IN Fe-Bi-Mn TERNARY ALLOY MULTIPHASE TRANSFORMATION- DIFFUSION SYSTEM
WANG Zhe1, WANG Fazhan1,2(), HE Yinhua1, WANG Xin1, MA Shan2, WANG Huimian3
1 College of Materials and Mineral Resources, Xi′an University of Architecture and Technology, Xi′an 710055
2 School of Mechanical and Electrical Engineering, Xi′an University of Architecture and Technology, Xi′an 710055
3 Technology Center, Shanxi Taigang Stainless Steel Co. Ltd., Taiyuan 030003
引用本文:

王哲, 王发展, 何银花, 王欣, 马姗, 王辉绵. Fe-Bi-Mn三元合金多相相变-扩散体系中易切削相析出规律的数值研究[J]. 金属学报, 2014, 50(11): 1393-1402.
Zhe WANG, Fazhan WANG, Yinhua HE, Xin WANG, Shan MA, Huimian WANG. NUMERICAL STUDY ON FREE-CUTTING PHASE PRECIPITATION BEHAVIOR IN Fe-Bi-Mn TERNARY ALLOY MULTIPHASE TRANSFORMATION- DIFFUSION SYSTEM[J]. Acta Metall Sin, 2014, 50(11): 1393-1402.

全文: PDF(4182 KB)   HTML
摘要: 

以扩散支配相变动力学方法为基础, 建立了多相三维流动凝固模型. 模型考虑了固、液、气三相扩散相变对Fe-Bi-Mn三元合金凝固的影响, 模拟研究了合金体系中Bi和MnS易切削相的析出过程, 并分析了易切削相的多相相变过程和多相扩散路径. 结果表明: 易切削相的析出过程受多相相变-扩散作用影响, Mls,MnS(MnS的固-液质量相变速率)较大, MnS的分配系数大而扩散系数小, 当C*s,MnS(MnS的固相界面浓度)大于Cl,MnS(MnS的液相浓度)时, 液相MnS在固-液界面处浓度降低, 最终被固相完全“捕获”, 导致MnS不再富集; Mls,Bi(Bi的固-液质量相变速率)较小且Mgl,Bi(Bi的液-气质量相变速率)为负值, Bi的分配系数小而扩散系数大, 凝固过程中存在气相Bi且Cl,Bi(Bi的液相浓度)始终大于C*s,Bi(Bi的固相界面浓度), 故Bi持续流动富集于MnS周围, 直至凝固结束. 研究工作将模拟结果与实验结果进行了对比, 两者吻合较好.

关键词 Fe-Bi-Mn三元合金凝固多相相变多相扩散路径数值研究    
Abstract

The solidification process of alloys are not just liquid to solid phase transformation, in fact in some alloys liquid to gas and gas to liquid phase transformation processes happen. A method incorporating the full diffusion-governed phase transformation kinetics into a multiphase volume average solidification model is presented. The motivation to develop such a model is to predict the multiple effect of inclusions precipitation behavior in castings. A key feature of this model, different from most previous ones which usually assume an infinite solute mixing in liquid lead to erroneous estimation of the multiphase diffusion path, is that diffusions in solid, liquid and gas phases are considered. Here solidification of Fe-Bi-Mn ternary alloy is examined. As MnS and Bi have large differences in the solute partition coefficient, diffusion coefficient and liquidus slope, the multiphase diffusion path shows differently from those predicted by infinite liquid mixing models. In this work, a three-dimensional mathematical model for a three-phase flow during its horizontai solidification was studied based on diffusion-governed phase transformation kinetics. Effects of Fe-Bi-Mn ternary alloy solidification on solid-liquid-gas phase transformation were considered. The free-cutting phase precipitation behavior was studied and multiphase transformation and multiphase diffusion path of free-cutting phase precipitation behavior were analyzed. Results show that the multiphase transformation-diffusion is strongly influenced by free-cutting phases precipitation behavior: MnS has a relatively large partition coefficient and small diffusion coefficient with larger Mls,MnS (solid-liquid mass transfer rate of MnS). During solidification, C*s,MnS (solid interface concentration of MnS) may become even larger than Cl,MnS (liquid concentration of MnS), MnS in liquid is assumed to be fully ‘trapped’ in solid and there is no longer any enrichment of MnS; however Bi has a relatively small partition coefficient and large diffusion coefficient with smaller Mls,Bi (solid-liquid mass transfer rate of Bi) and negative Mgl,Bi (liquid-gas mass transfer rate of Bi), during solidification, Cl,Bi (liquid concentration of Bi) always greater than C*s,Bi (solid interface concentration of Bi). In addition, due to the existence of Bi-gas phase, Bi continuous to flow, enriched in the solidified around MnS. Calculated results show good agreement with experimental data.

Key wordsFe-Bi-Mn ternary alloy    solidification    multiphase transformation    multiphase diffusion path    numerical study
收稿日期: 2014-07-25     
ZTFLH:  TG111.4  
基金资助:* 十二五国家科技支撑计划项目2011BAE31B02以及西安建筑科技大学“高性能有色金属材料制备与加工创新团队”项目资助
作者简介: null

王 哲, 男, 1989年生, 硕士生

Name Equation Number
Conservative equation
Solid-liquid mass conservative ? ? t ( f s ρ s ) = M l s (1)
? ? t ( f l ρ l ) + ? ? ( f l ρ l u l ) = M s l (2)
Liquid-gas mass conservative ? ? t ( f l ρ l ) + ? ? ( f l ρ l u l ) = M g l (3)
? ? t ( f g ρ g ) + ? ? ( f g ρ g u g ) = M l g (4)
Solid-liquid momentum conservative ? ? t ( f l ρ l u l ) + ? ? ( f l ρ l u l ? u l ) = - f l ? p + ? ? τ l + f l ρ l g - U l s M - U l s D τ l = u l ( ? ? ( f l μ l ) + ( ? ? ( f l μ l ) ) T )
(5)
Liquid-gas momentum conservative ? ? t ( f g ρ g u g ) + ? ? ( f g ρ g u g ? u g ) = - f g ? p + ? ? τ g + f g ρ g g - U g l M - U g l D τ g = u g ( ? ? ( f g μ g ) + ( ? ? ( f g μ g ) ) T )
(6)
Solid-liquid species conservative ? ? t ( f s ρ s c s ) = C l s M (7)
? ? t ( f l ρ l c l ) + ? ? ( f l ρ l u l c l ) = C s l M (8)
Liquid-gas species conservative ? ? t ( f l ρ l c l ) + ? ? ( f l ρ l u l c l ) = C g l M (9)
? ? t ( f g ρ g c g ) + ? ? ( f g ρ g u g c g ) = C l g M (10)
Solid enthalpy conservative ? ? t ( f s ρ s h s ) = ? ? ( f s k s ? T s ) + Q s M + Q l s D h s = T r e f T s c p s d T + h s r e f
(11)
Liquid enthalpy conservative ? ? t ( f l ρ l h l ) + ? ? ( f l ρ l u l h l ) = ? ? ( f l k l ? T l ) + Q l M - Q l s D h l = T r e f T l c p l d T + h l r e f
(12)
Gas enthalpy conservative ? ? t ( f g ρ g h g ) + ? ? ( f g ρ g u g h g ) = ? ? ( f g k g ? T g ) + Q g M - Q g l D h g = T r e f T g c p g d T + h g r e f (13)
Transfer rate equation
Solid-liquid mass transfer rate M l s = v R l ? S l s ? ρ s (14)
Liquid-gas mass transfer rate M g l = v R g ? S g l ? ρ l (15)
Solid-liquid interface diffusion-phase transformation rate ν R l = d f s d t ? 1 S l s (16)
Liquid-gas interface diffusion-phase transformation rate ν R g = d f l d t ? 1 S g l (17)
表1  守恒方程与传递速率方程[10,14,16]
图1  Fe-Bi-Mn三元合金的凝固过程示意图
图2  多相相变-扩散体系示意图
Parameter Fe MnS Bi
Atomic fraction / % 55.8 87.0 209.0
Melting point / K 1808 1630 544
Density / (kg·m-3) 7850 3990 9780
Specific heat / (J·kg-1·K-1) 460 303 130
Viscosity / (kg·m-1·s-1) 0.0059 0.0073 0.0021
Heat conductivity / (W·m-1·K-1) 80.4 34.0 7.9
Latent heat / (J·kg-1) 246400 148390 11300
Liquidus slope / K -55.0 -4.8 -2.7
Partition coefficient 0.36 0.84 0.25
Solid diffusion coefficient / (m2·s-1) 1.0×10-9 1.2×10-13 2.2×10-9
Liquid diffusion coefficient / (m2·s-1) 2.0×10-8 4.0×10-9 1.6×10-8
Gas diffusion coefficient / (m2·s-1) - - 5.7×10-7
Thermal expansion coefficient / K-1 1.43×10-4 1.07×10-4 2.83×10-4
Solutal expansion coefficient / (%-1) 1.1×10-2 0.2×10-2 1.9×10-2
Initial temperature / K 1873 1873 1873
External temperature / K 298 298 298
表2  模拟中采用的物性参数
图3  三维模型及其边界条件与初始条件示意图
图4  Fe-0.3%Bi-0.9%Mn三元合金凝固后Bi和MnS的三维分布图
图5  合金凝固900 s时图4中zone IV区域的截面图
图6  合金凝固900 s时图4中zone I区域截面的等值线图
图7  合金凝固1500 s时图4中zone IV区域截面图
图8  图5a中path I 区域(Cl,MnS, Cl,Bi) , (C*l,MnS, C*l,Bi) 和(C*s,MnS, C*s,Bi) 的多相扩散路径
图9  多相扩散作用下溶质的固、液、气三相浓度及它们的界面浓度随固相分数变化的曲线
图10  Fe-0.3%Bi-0.9%Mn易切削不锈钢横、纵向的实验与模拟表面组织结构图
图11  实验与模拟合金横截面中Bi和MnS的平均近邻距离方差COVd
图12  符号说明
[1] Krishtal M A, Borgardt A A, Yashin Y D. Met Sci Heat Treat, 1977; 19: 178
[2] Lou D, Cui K, Jia Y. J Mater Eng Perform, 1997; 6: 215
[3] Akasawa T, Sakurai H, Nakamura M, Tanaka T, Takano K. J Mater Process Technol, 2003; 143: 66
[4] Iwamoto T, Murakami T. Jfe Tech Rep, 2004; 4: 64
[5] Wu D, Li Z. J Iron Steel Res Int, 2010; 17: 59
[6] Li Y, Suzuki T, Tang N, Koizumi Y, Chiba A. Mater Sci Eng, 2013; A583: 161
[7] Bhattacharya D. Metall Mater Trans, 1981; 12A: 973
[8] Yaguchi H. Mater Sci Tech-Lond, 1989; 5: 255
[9] Xu J L, Song B, Chen J K, Han Q Y, Jiang G C. Acta Metall Sin, 1993; 29: 65
[9] (徐建伦, 宋 波, 陈继开, 韩其勇, 蒋国昌. 金属学报, 1993; 29: 65)
[10] Wang Z, Wang F Z, Wang X, He Y H, Ma S, Wu Z. Acta Phys Sin, 2014; 63: 076101
[10] (王 哲, 王发展, 王 欣, 何银花, 马 姗, 吴 振. 物理学报, 2014; 63: 076101)
[11] Li J, Wu M, Hao J, Ludwig A. Comp Mater Sci, 2012; 55: 407
[12] Ueshima Y, Sawada Y, Mizoguchi S, Kajioka H. Metall Mater Trans, 1989; 20A: 1375
[13] Yamamoto K, Shibata H, Mizoguchi S. ISIJ Int, 2006; 46: 82
[14] Schneider M C, Beckermann C. Int J Heat Mass Transfer, 1995; 38: 3455
[15] Dupont J N. Metall Mater Trans, 2006; 37A: 1937
[16] Wang T M, Li T J, Cao Z Q, Jin J Z, Grimmig T, Bührig-Polaczek A, Wu M, Ludwig A. Acta Metall Sin, 2006; 42: 591
[16] (王同敏, 李廷举, 曹志强, 金俊泽, Grimmig T, Bührig-Polaczek A, Wu M, Ludwig A. 金属学报, 2006; 42: 591)
[17] Beckermann C, Viskanta R. Appl Mech Rev, 1993; 46: 1
[18] Ludwig A, Wu M. Metall Mater Trans, 2002; 33A: 3673
[19] Ahmad N, Rappaz J, Desbiolles J L, Jalanti T, Rappaz M, Combeau H. Metall Mater Trans, 1998; 29A: 617
[20] Wu M, Ludwig A, Bührig-Polaczek A, Fehlbier M, Sahm P R. Int J Heat Mass Transfer, 2003; 46: 2819
[21] Xu D, Bai Y, Fu H, Guo J. Int J Heat Mass Transfer, 2005; 48: 2219
[22] Wu M, Könözsy L, Ludwig A, Schutzenhofer W, Tanzer R. Steel Res Int, 2008; 79: 637
[23] Založnik M, Combeau H. Int J Therm Sci, 2010; 49: 1500
[24] Zhao G W, Li X Z, Xu D M, Fu H Z, Du Y, He Y H. Acta Metall Sin, 2011; 47: 1135
[24] (赵光伟, 李新中, 徐达鸣, 傅恒志, 杜 勇, 贺跃辉. 金属学报, 2011; 47: 1135)
[25] Peng D J, Lin X, Zhang Y P, Guo X, Wang M, Huang W D. Acta Metall Sin, 2013; 49: 365
[25] (彭东剑, 林 鑫, 张云鹏, 郭 雄, 王 猛, 黄卫东. 金属学报, 2013; 49: 365)
[26] Kurz W, Fisher D J. Fundamentals of Solidification. Switzerland: Trans Tech Publication, 1998: 280
[27] Galenko P K, Danilov D A. J Cryst Growth, 1999; 197: 992
[28] Guttmann M. Metall Mater Trans, 1977; 8A: 1383
[29] Temmel C, Ingesten N G, Karlsson B. Metall Mater Trans, 2006; 37A: 2995
[30] Kang Y B. Calphad, 2010; 34: 232
[31] Rangel R H, Bian X. Numer Heat Transfer, 1995; 28A: 589
[32] Rangel R H, Bian X. Int J Heat Mass Transfer, 1996; 39: 1591
[33] Bian X, Rangel R H. Int J Heat Mass Transfer, 1998; 41: 244
[34] American Society for Metals. ASM Metals Handbook. Michigan: ASM International, 1987: 83
[35] Brandes E A, Brook G B. Smithell's Light Metals Handbook. Massachusetts: Elsevier Science and Technology, 1998: 36
[36] Ayyar A, Chawla N. Compos Sci Technol, 2006; 66: 1980
[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[4] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[5] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[6] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[7] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[8] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[9] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[10] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[11] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[12] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[13] 张雷, 施韬, 黄火根, 张培, 张鹏国, 吴敏, 法涛. 铀基非晶复合材料的相分离与凝固序列研究[J]. 金属学报, 2022, 58(2): 225-230.
[14] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[15] 曹江海, 侯自兵, 郭中傲, 郭东伟, 唐萍. 过热度对轴承钢凝固组织整体形貌特征及渗透率的影响[J]. 金属学报, 2021, 57(5): 586-594.