Please wait a minute...
金属学报  2014, Vol. 50 Issue (12): 1513-1519    DOI: 10.11900/0412.1961.2014.00185
  论文 本期目录 | 过刊浏览 |
激光原位制备硼化钛与镍钛合金增强钛基复合涂层
林英华, 雷永平, 符寒光, 林健
北京工业大学材料科学与工程学院, 北京 100124
LASER IN SITU SYNTHESIZED TITANIUM DIBORIDE AND NITINOL REINFORCE TITANIUM MATRIX COMPOSITE COATINGS
LIN Yinghua, LEI Yongping, FU Hanguang, LIN Jian
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124
全文: PDF(6322 KB)   HTML
摘要: 以不同配比的Ni粉末和TiB2粉末混合物为预置层, 利用激光原位技术在钛合金表面制备了bcc结构的NiTi合金、TiB短纤维与TiB2颗粒增强钛基复合涂层. 运用XRD, SEM与EPMA等实验手段, 对合成的钛基复合涂层进行测试分析. 结果表明, 随着激光功率密度与Ni粉末添加量的增加, 涂层表面成型质量得到改善; 然而随着Ni添加量的提高, 涂层中出现了NiTi2新相, 且TiB短纤维变得粗大; 通过热力学计算可知, 反应驱动力大小顺序为Ni3Ti>NiTi2>NiTi>TiB, 并结合涂层中相种类及含量的变化规律, 探讨了不同元素反应间的竞争机制.
关键词 激光熔覆TC4钛合金TiBNiTi    
Abstract:Laser cladding is a technique in which a laser beam is used as the heating source to melt the alloy powder to be clad on the surface of titanium alloy substrate. Currently, the surface of many titanium alloy components needs repairing after a period of service in order to extend their service life. TiB and TiB2 are considered as the excellent ceramic reinforced particle for their compatible physical and thermodynamic properties, high hardness and Young's modulus of elasticity. The intermetallic compound NiTi, well-known for its shape memory effect and pseudo-elasticity, is one of the rarely few intermetallic compounds having excellent combination of high strength, ductility and toughness as well as excellent wear resistance and fabrication processing properties. An in-situ TiB/TiB2 structured ceramic materials as the reinforcing phase and NiTi intermetallic phase as the matrix would be expected to have an outstanding combination of high hardness and toughness. NiTi alloy, TiB short fiber and TiB2 particulate reinforced titanium matrix composite coatings were prepared by laser in situ synthesis on titanium surface with different ratios of Ni powder and TiB2 powder mixture as a preset level. Synthesis of titanium matrix composite coating was analyzed by XRD, SEM and EPMA. The results show that the surface quality of the coating increases with increasing laser power density and the amount of Ni powder. Whereas, the new phase of NiTi2 and coarse diameter of TiB short fiber are found in the coating when the amount of Ni added is improved. The reaction mechanism is discussed based on thermodynamic calculations. The reaction driving force size to Ni3Ti>NiTi2>NiTi>TiB order arrangement are found by thermodynamic calculation, and reaction mechanism of competition between the different elements is discussed based on phase variation of the type and content in the coating.
Key wordslaser cladding    TC4 titanium alloy    TiB    NiTi
    
基金资助:*国家自然科学基金资助项目51275006
Corresponding author: Correspondent: LEI Yongping, professor, Tel: (010)67391759, E-mail: yplei@bjut.edu.cn   
作者简介: 林英华, 男, 1985年生, 博士生

引用本文:

林英华, 雷永平, 符寒光, 林健. 激光原位制备硼化钛与镍钛合金增强钛基复合涂层[J]. 金属学报, 2014, 50(12): 1513-1519.
. LASER IN SITU SYNTHESIZED TITANIUM DIBORIDE AND NITINOL REINFORCE TITANIUM MATRIX COMPOSITE COATINGS. Acta Metall Sin, 2014, 50(12): 1513-1519.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2014.00185      或      https://www.ams.org.cn/CN/Y2014/V50/I12/1513

图1  不同成分配比与不同激光功率下复合涂层的表面宏观形貌
图2  激光功率为2.36 kW, 扫描速度6 mm/s下不同成分配比所获得涂层表层的XRD谱
图3  不同成分配比下涂层截面中部的SEM像
图4  3种不同成分配比的涂层横截面中部显微组织的SEM像及EPMA测试位置
图5  Ni∶TiB2=0.5∶1的涂层的SEM像及EPMA面扫描结果
图6  公式(1)~(11)中Ni, Ti和TiB2之间的反应Gibbs自由能随温度的变化曲线
表1  图4中各位置的EPMA分析结果
[1] Kaestner P, Olfe J, He J, He W, Rie K T. Surf Coat Technol, 2001; 142: 928
[2] Astar E, Kayali E S, Cimenoglu H. Surf Coat Technol, 2008; 202: 4583
[3] Fridrici V, Fouvry S, Kapsa P. Wear, 2001; 250: 642
[4] Bai L, Ding Y, Deng K, Wang N T, Gong H B, Dai Z D. Mater Rev, 2013; 27: 79 (柏 林, 丁 燕, 邓 凯, 王宁涛, 龚海波, 戴振东. 材料导报, 2013; 27: 79)
[5] Shen G Q, Lei J, Liang Y M, Wang S H. J Beijing Univ Aeronaut Astronaut, 1995; 21: 5 (沈桂琴, 雷 杰, 梁佑明, 王世洪. 北京航空航天大学学报, 1995; 21: 5)
[6] Wang H M, Cao F, Cai L X, Tang H B, Yu R L, Zhang L Y. Acta Mater, 2003; 51: 6319
[7] Gao F, Wang H M. Mater Charact, 2008; 59: 1349
[8] Wang Z X, He Z Y, Wang Y Q, Liu X P, Tang B. Mater Sci Forum, 2011; 687: 759
[9] Wang Z X, He Z Y, Wang Y Q, Liu X P, Tang B. Appl Surf Sci, 2011; 257: 10272
[10] Liang Y N, Li S Z, Jin Y B. Wear, 1996; 198: 236
[11] Indrani S, Gopinath K, Ranjan D, Ramamurty U. Acta Mater, 2010; 58: 6799
[12] Guo X L, Wang L Q, Wang M M, Qin J N, Zhang D, Lu W J. Acta Mater, 2012; 60: 2656
[13] Lin Y H, Chen Z Y, Li Y H, Zhu W H, Wen X D, Wang X L. Infrared Laser Eng, 2012; 41: 2694 (林英华, 陈志勇, 李月华, 朱卫华, 文向东, 王新林. 红外与激光工程, 2012; 41: 2694)
[14] Hagihara K, Nakano T, Umakoshi Y. Acta Mater, 2003; 51: 2623
[15] Zhu H B, Li H, Li Z X. Surf Coat Technol, 2013; 235: 620
[16] Zhang X W, Liu H X, Jiang Y H, Wang C Q. Acta Metall Sin, 2011; 47: 1086 (张晓伟, 刘洪喜, 蒋业华, 王传琦. 金属学报, 2011; 47: 1086)
[17] Gorsse S, Miracle D B. Acta Mater, 2003; 51: 2427
[18] De Graef M, Loefvander J P A, Levi C G. Acta Metall Mater, 1991; 39: 2381
[19] Kawabata K, Sato E, Kuribayashi K. Scr Mater, 2004; 50: 523
[20] Leyens C, translated by Chen Z H. Titanium and Titanium Alloy. Beijing: Chemical Industy Press, 2005: 8 (Leyens C著, 陈振华译. 钛与钛合金. 北京: 化学工业出版社, 2005: 8)
[21] Ye D L, Hu J H. Utility Inorganic Materials Thermodynamics Data Handbook. 2nd Ed, Beijing: Metallurgy Industry Press, 2002: 115 (叶大伦, 胡建华. 实用无机物热力学数据手册. 第二版, 北京: 冶金工业出版社, 2002: 115)
[22] Yang Y F, Wang H Y, Zhao R Y. J Mater Res, 2007; 22: 169
[23] Yang Z F. PhD Dissertation, Shanghai Jiao Tong University, 2007 (杨志峰. 上海交通大学博士学位论文, 2007)
[24] Lv W J, Xiao L, Geng K, Qin J N, Zhang D. Mater Charact, 2008; 59: 912
[25] Panda K B, Ravi K S. Acta Mater, 2006; 54: 1641
[1] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[2] 任建强, 梁淑华, 姜伊辉, 杜翔. 原位(TiB2-TiB)/Cu复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 126-132.
[3] 王宝刚, 易红亮, 王国栋, 骆智超, 黄明欣. 原位生成铁基复合材料中TiB2的三维形貌重构[J]. 金属学报, 2019, 55(1): 133-140.
[4] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[5] 韦昭召, 马骁, 张新平. NiTi合金B2-B19′马氏体相变晶体学的拓扑模拟研究[J]. 金属学报, 2018, 54(10): 1461-1470.
[6] 林英华, 袁莹, 王梁, 胡勇, 张群莉, 姚建华. 电磁复合场对Ni60合金凝固过程中显微组织和裂纹的影响[J]. 金属学报, 2018, 54(10): 1442-1450.
[7] 张丽丽, 江鸿翔, 赵九洲, 李璐, 孙倩. 溶质Ti对Al-Ti-B中间合金细化Al影响的新认识:TiB2粒子的动力学行为及溶质Ti的影响[J]. 金属学报, 2017, 53(9): 1091-1100.
[8] 刘国怀, 李天瑞, 徐莽, 付天亮, 李勇, 王昭东, 王国栋. 累积叠轧TC4钛合金的组织演化与力学性能[J]. 金属学报, 2017, 53(9): 1038-1046.
[9] 童文辉,赵子龙,张新元,王杰,国旭明,段新华,刘豫. 球墨铸铁表面激光熔覆TiC/钴基合金组织和性能研究[J]. 金属学报, 2017, 53(4): 472-478.
[10] 高玉魁. 不同表面改性强化处理对TC4钛合金表面完整性及疲劳性能的影响*[J]. 金属学报, 2016, 52(8): 915-923.
[11] 刘彬,贡凯,乔岩欣,董世运. 基于金属磁记忆评价裂纹埋深对激光熔覆层应力的影响*[J]. 金属学报, 2016, 52(2): 241-248.
[12] 徐滨士,方金祥,董世运,刘晓亭,闫世兴,宋超群,夏丹. FV520B不锈钢激光熔覆热影响区组织演变及其对力学性能的影响*[J]. 金属学报, 2016, 52(1): 1-9.
[13] 姬书得,温泉,马琳,李继忠,张利. TC4钛合金搅拌摩擦焊厚度方向的显微组织*[J]. 金属学报, 2015, 51(11): 1391-1399.
[14] 林英华, 雷永平, 符寒光, 林健. Ni添加对TiB2/TiB钛基复合涂层组织与力学性能的影响[J]. 金属学报, 2014, 50(12): 1520-1528.
[15] 王传琦, 刘洪喜, 周荣, 蒋业华, 张晓伟. 机械振动辅助激光熔覆NiCrBSi-TiC复合涂层中颗粒相行为特征[J]. 金属学报, 2013, 49(2): 221-228.