Please wait a minute...
金属学报  2014, Vol. 50 Issue (9): 1071-1077    DOI: 10.11900/0412.1961.2013.00849
  本期目录 | 过刊浏览 |
异步轧制硅钢的表面纳米化及轧制参数的影响
刘刚1(), 马野1, 张瑞君1, 王小兰2, 沙玉辉3, 左良3
1 东北大学研究院, 沈阳 110819
2 中国科学院金属研究所金属腐蚀与防护国家重点实验室, 沈阳 110016
3 东北大学材料电磁过程研究教育部重点实验室, 沈阳 110819
SURFACE NANOCRYSTALLIZATION OF SILICON STEEL INDUCED BY ASYMMETRIC ROLLING AND EFFECT OF ROLLING PARAMETERS
LIU Gang1(), MA Ye1, ZHANG Ruijun1, WANG Xiaolan2, SHA Yuhui3, ZUO Liang3
1 Research Academy, Northeastern University, Shenyang 110819
2 State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Science, Shenyang 110016
3 Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819
引用本文:

刘刚, 马野, 张瑞君, 王小兰, 沙玉辉, 左良. 异步轧制硅钢的表面纳米化及轧制参数的影响[J]. 金属学报, 2014, 50(9): 1071-1077.
Gang LIU, Ye MA, Ruijun ZHANG, Xiaolan WANG, Yuhui SHA, Liang ZUO. SURFACE NANOCRYSTALLIZATION OF SILICON STEEL INDUCED BY ASYMMETRIC ROLLING AND EFFECT OF ROLLING PARAMETERS[J]. Acta Metall Sin, 2014, 50(9): 1071-1077.

全文: PDF(4179 KB)   HTML
摘要: 

对硅钢板材分别进行异步和同步轧制, 研究了轧制参数包括速比、压下量和道次对板材表面显微组织的演变的作用. 结果表明, 异步轧制硅钢板材表面形成了晶粒尺寸为10~50 nm, 取向接近随机分布的纳米晶, 而同步轧制板材的表面只形成了位错胞, 证明异步轧制可以诱发表面纳米化. 异步轧制板材表面纳米晶的形成过程为: 在剪切力的反复作用下, 高密度位错形成、滑移、湮灭和重组形成亚微米尺度的亚微晶/位错胞. 随着压下量和轧制道次增加, 高密度位错重复以上过程使晶粒尺寸减小、取向差增大, 最终形成取向接近随机分布的纳米晶组织. 大压下量和多道次是异步轧制诱发板材表面纳米化的关键, 而速比的增加可以加快纳米化进程.

关键词 硅钢异步轧制表面纳米化结构    
Abstract

Surface nanocrystallization (SNC) can effectively enhance the surface and global properties of the metallic materials, such as microhardness, intensity, fatigue, wear and corrosion resistances, therefore provides more promising practical industrial applicability. Up to now, several SNC treatment methods were developed based either on the principles of ball impactions or friction sliding, however, difficulty still exists for the surface treatment of large-dimensional samples with high efficiency. Recently, more attentions were focused on the asymmetric rolling, of which upper and lower rolls rotate with different circumferential speeds, and then an extra shear strain was applied to metal sheet in addition to compression strain. The shear strain could refine the grains into micro- or submicro-scales. In order to investigate the possibility to realize the SNC for metal sheet in the rolling process and examine the effects of rolling parameters, silicon steel sheet was rolled by means of asymmetric rolling and conventional rolling respectively, the microstructural evolution in the top surface layer was observed for the samples rolled for different parameters including mismatch speed ratio, rolling reduction and rolling pass. Experimental results show that after the asymmetric rolling, nanocrystallines about 10~50 nm in size with nearly random orientations form in the top-surface layer of sheet. Meanwhile, dislocation cells can be observed after conventional rolling, which indicates that the asymmetric rolling can be utilized for the surface nanocrystallization of the cubic metal sheets. The surface nanocrystallization mechanism induced by asymmetric rolling was summarized as follows: (1) upon the application of repeated shear force, submicro-grains/dislocation cells form through formations, slips, annihilations and recombinations of high density of dislocations; (2) with a further increment of rolling reduction and rolling pass, high density of dislocations in the refined cells/grains developing in above route lead to reduction of grain size and increment of misorientations between the refined grains; (3) nanocrystallines with nearly random orientations form. Larger reduction and multi-passes are necessary for the surface nanocrystallization induced by asymmetric rolling, and the increment of mismatch speed ratio can accelerate the grain refinement process.

Key wordssilicon steel    asymmetric rolling    surface nanocrystallization    structure
    
ZTFLH:  TG142.71  
基金资助:* 国家高技术研究发展计划项目2012AA03A505, 高校基本科研业务费专项资金N100202001和教育部高校博士学科点专项科研基金20110042110002资助
作者简介: null

刘刚, 男, 1963年生, 教授, 博士

图1  原始及经过不同压下量异步轧制的硅钢板材横截面的OM像
图2  在速比为1.31, 轧制道次为40 (MSR=1.31, RP=40) 的异步轧制过程中硅钢板材表面的TEM像和SAED谱
图3  在MSR=1.31, RP=20的异步轧制过程中硅钢板材表面的TEM像和SAED谱
图4  经过MSR=1.31, RP=8, 压下量RD=91%的异步轧制后硅钢板材表面的TEM像和SAED谱
图5  经过MSR=1.18, RP=20, RD=91%的异步轧制后硅钢板材表面的TEM像和SAED谱
图6  经过RD=91%同步轧制后硅钢板材表面的TEM像和SAED谱
[1] Lu K, Lu J. J Mater Sci Technol, 1999; 15: 193
[2] Lu K, Lu J. Mater Sci Eng, 2004; A375-377: 38
[3] Roland T, Retraint D, Lu K, Lu J. Mater Sci Eng, 2007; A445-446: 281
[4] Yong X P, Liu G, Lu K, Lu J. J Mater Sci Technol, 2003; 19: 1
[5] Li D, Chen H N, Xu H. Appl Surf Sci, 2009; 255: 3811
[6] Zhou L, Liu G, Han Z, Lu K. Scr Mater, 2008; 58: 445
[7] Wang T S, Yu J K, Dong B F. Surf Coat Technol, 2006; 200: 4777
[8] Zhang H W, Wang L, Hei Z K, Liu G, Lu J, Lu K. Z Metallka, 2003; 94: 1143
[9] Wang Z B, Lu J, Lu K. Surf Coat Technol, 2006; 201: 2796
[10] Balusamy T,Narayanan T S N S, Ravichandran K. Surf Coat Technol, 2012; 213: 221
[11] Ge L L, Tian N, Lu Z X, You C Y. Appl Surf Sci, 2013; 286: 412
[12] Liu G, Wang S C, Lou X F, Lu J, Lu K. Scr Mater, 2001; 44: 1791
[13] Umemoto M, Todaka Y, Tsuchiya K. Mater Trans, 2003; 44: 1488
[14] Liu G, Lu J, Lu K. Mater Sci Eng, 2000; A286: 91
[15] Xiong T Y, Liu Z W, Li Z C. Mater Rev, 2003; 17: 69
[15] (熊天英, 刘志文, 李智超. 材料导报, 2003; 17: 69)
[16] Wang T, Wang D P, Liu G, Gong B M, Song N S. Appl Surf Sci, 2008; 255: 1829
[17] Mousavi S A A A, Ebrahimi S M, Madoliat R. J Mater Proc Technol, 2007; 187-188: 725
[18] Jiang J H, Ding Y, Zuo F Q, Shan A D. Scr Mater, 2009; 60: 905
[19] Kim W J, Yoo S J, Jeong H T, Kim D M, Choe B H, Lee J B. Scr Mater, 2011; 64: 49
[20] Liu G, Liu J Y, Wang X L, Wang F H, Zhao X, Zuo L. Acta Metall Sin, 2013; 49: 599
[20] (刘 刚, 刘金阳, 王小兰, 王福会, 赵 骧, 左 良. 金属学报, 2013; 49: 599)
[21] Tao N R, Wang Z B, Tong W P, Sui M L, Lu J, Lu K. Acta Mater, 200; 50: 4603
[22] Zhu K Y, Vassel A, Brisset F, Lu K, Lu J. Acta Mater, 2004; 52: 4101
[23] Zuo F Q, Jiang J H, Shan A D, Fang J M, Zhang Y X. Trans Nonferrous Met Soc China, 2008; 18: 774
[24] Ji Y H, Park J J, Kim W J. Mater Sci Eng, 2007; A454-455: 570
[25] Ji Y H, Park J J. Mater Sci Eng, 2008; A485: 299
[1] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[2] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[3] 李谦, 刘凯, 赵天亮. 弹性拉应力下Q235碳钢在5%NaCl盐雾中的成锈行为及其机理[J]. 金属学报, 2023, 59(6): 829-840.
[4] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[5] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[6] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[7] 李谦, 孙璇, 罗群, 刘斌, 吴成章, 潘复生. 镁基材料中储氢相及其界面与储氢性能的调控[J]. 金属学报, 2023, 59(3): 349-370.
[8] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[9] 高晗, 刘力, 周笑宇, 周心怡, 蔡汶君, 周泓伶. Ti6Al4V表面微纳结构的制备及生物活性[J]. 金属学报, 2023, 59(11): 1466-1474.
[10] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[11] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[12] 刘志愿, 王永贵, 赵成玉, 杨婷, 夏爱林. p型方钴矿热电材料纳米-介观尺度微结构调控[J]. 金属学报, 2022, 58(8): 979-991.
[13] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[14] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[15] 任师浩, 刘永利, 孟凡顺, 祁阳. 应变工程中Bi(111)薄膜的半导体-半金属转变及其机理[J]. 金属学报, 2022, 58(7): 911-920.