Please wait a minute...
金属学报  2009, Vol. 45 Issue (9): 1083-1090    
  论文 本期目录 | 过刊浏览 |
TWIP钢中晶粒尺寸对TWIP效应的影响
王书晗 ; 刘振宇; 王国栋
东北大学轧制技术与连轧自动化国家重点实验室; 沈阳 110004
INFLUENCE OF GRAIN SIZE ON TWIP EFFECT IN A TWIP STEEL
WANG Shuhan; LIU Zhenyu; WANG Guodong
State Key Laboratory of Rolling and Automation; Northeastern University; Shenyang 110004
引用本文:

王书晗 刘振宇 王国栋. TWIP钢中晶粒尺寸对TWIP效应的影响[J]. 金属学报, 2009, 45(9): 1083-1090.
, , . INFLUENCE OF GRAIN SIZE ON TWIP EFFECT IN A TWIP STEEL[J]. Acta Metall Sin, 2009, 45(9): 1083-1090.

全文: PDF(1353 KB)  
摘要: 

冷轧TWIP钢经1073, 1173, 1273和1373 K固溶处理10 min后, 得到了晶粒尺寸分别为7, 13, 30和63 μm 的奥氏体组织. 拉伸实验表明, 随着晶粒尺寸的增加, 加工硬化速率(dσ/dε)与真应变 (ε)的变化关系由2阶段变为3阶段. 当晶粒尺寸大于30 μm时, 加工硬化速率与真应变关系中的第2阶段对应的应变长度随着晶粒尺寸的增加而迅速增加. 当真应变为0-0.2时, 加工硬化指数随真应变的增加而迅速增加; 在随后的变形中, 与上述4个晶粒尺寸对应的试样的加工硬化指数分别稳定在0.47, 0.53, 0.56和0.68. OM和TEM观察显示, 随晶粒尺寸的增大, 变形过程中形变孪晶数量增多. 对于较大晶粒尺寸的试样, 形变孪晶在拉伸变形过程中形核的临界应力较低, 随变形量增加, 形变孪晶可持续形成, 使其加工硬化能力增加, 从而增大了TWIP效应; 相反, 晶粒尺寸减小使变形过程中的形变孪晶形核临界应力增大, 抑制形变孪晶的产生, 从而减小了TWIP效应.

关键词 TWIP钢晶粒尺寸加工硬化速率加工硬化指数TWIP效应    
Abstract

TWIP (twinning induced plasticity) steels possess very high plasticity and high strength. It has been pointed out that deformation twinning plays an important role in controlling the deformation behavior, which divides grains into nano--scale layer--like structures to result in high strain-hardening rate or the so--called “TWIP” effect. The formation of deformation twins is affected by deformation temperature, strain rate, pr--deformation and grain size. The generation of deformation twins in austenitic steel with low stacking fault energy (SFE) is closely related to grain size. However, the relationship between strain hardening rate and grain size in TWIP steels has yet to be clarified, which is important for optimizing the parameters of solution treatments. In the present paper, the specimens of a typical TWIP steel with grain sizes of 7, 13, 30 and 63 μm were fabricated through solution treatments at different temperatures. Mechanical properties were measured by tensile tests, and microstructure evolution was observed by OM and TEM. The results show that the strain-hardening exponent rapidly increases with increasing true strain when it is less than 0.2, but levels off in the subsequent process of deformation. The relationship between strain hardening rate and true strain consists of two stages for the specimen with small grain size and three stages for the specimen with large grain size. Microstructure observation demonstrated that the number of deformation twins increases with the increase of grain size, induced to greater“TWIP”effect in the coarse-grained specimen than in the fine-grained specimen. This can be attributed to the dependence of the critical stress for formation of deformation twins on grain size of σTT0+KT}d-A.

Key wordsTWIP steel    grain size    strain hardening rate    strain hardening exponent    TWIP effect
收稿日期: 2009-02-23     
ZTFLH: 

TG115.213

 
基金资助:

国家自然科学基金项目50873141及国家重点基础研究发展规划项目2004CB619108资助

作者简介: 王书晗, 女, 1982年生, 博士生

[1] Frommeyer G, Br¨ux U, Neumann P. ISIJ Int, 2003; 43: 438
[2] Gr¨assel O, Kr¨uger L, Frommeyer G, Meyer L W. Int J Plast, 2000; 16: 1391
[3] Vercammen S, Blanpai B, Cooman B C D, Wollants P. Acta Mater, 2004; 52: 2005
[4] Bouaziz O, Guelton N. Mater Sci Eng, 2001; A319–321: 246
[5] Shiekhelsouk M N, Favier V, Inal K, Cherkaoui M. Int J Plast, 2009; 25: 105
[6] Christian J W, Mahajan S. Pro Mater Sci, 1995; 39: 1
[7] Ueji R, Tsuchida N, Terada D, Tsuji N, Tanaka Y, Takemura A, Kunishige K. Scr Mater, 2008; 59: 963
[8] Danaf E E, Kalidindi S R, Doherty R D. Int J Plast, 2001; 17: 1245
[9] Lu L, Shen Y, Chen X, Qian L, Lu K. Science, 2004; 304: 422
[10] Kalidindi S R. Int J Plast, 1998; 14: 1265
[11] Danaf E E, Kalidindi S R, Doherty R D. Metall Mater Trans, 1999; 30A: 1223
[12] Xiong R G, Fu R Y, Li Q, ZhangM, Li L. Iron Steel, 2007; 42: 61
(熊荣刚, 符仁钰, 黎倩, 张 梅, 李 麟. 钢铁, 2007; 42: 61)

[13] Barbier D, Gey N, Allain S, Bozzolo N, Humbert M. Mater Sci Eng, 2009; A500: 196
[14] Sevillano J G. Scr Mater, 2008; 59: 135
[15] Meyers M A, V¨ohringer O, Lubarda V A. Acta Mater, 2001; 49: 4025
[16] Barnett M R. Scr Mater, 2008; 59: 696
[17] Allain S, Chateau J–P, Kahmoun K, Bouaziz O. Mater Sci Eng, 2004; A387–389: 272
[18] Allain S, Chateau J–P, Bouaziz O, Migot S, Guelton N. Mater Sci Eng, 2004; A387–389: 158

[1] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[2] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[3] 彭俊, 金鑫焱, 钟勇, 王利. 基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响[J]. 金属学报, 2022, 58(12): 1600-1610.
[4] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[5] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[6] 李晓倩, 王富国, 梁爱民. 喷涂工艺对Ta2O5原位复合钽基纳米晶涂层微观结构及摩擦磨损性能的影响[J]. 金属学报, 2021, 57(2): 237-246.
[7] 张守清, 胡小锋, 杜瑜宾, 姜海昌, 庞辉勇, 戎利建. 海洋平台用Ni-Cr-Mo-B超厚钢板的截面效应[J]. 金属学报, 2020, 56(9): 1227-1238.
[8] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[9] 和淑文, 王鸣华, 白琴, 夏爽, 周邦新. WC-TiC-TaC-Co硬质合金中TaC含量对其显微组织和力学性能的影响[J]. 金属学报, 2020, 56(7): 1015-1024.
[10] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[11] 李金许,王伟,周耀,刘神光,付豪,王正,阚博. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458.
[12] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[13] 华涵钰,谢君,舒德龙,侯桂臣,盛乃成,于金江,崔传勇,孙晓峰,周亦胄. W含量对一种高W镍基高温合金显微组织的影响[J]. 金属学报, 2020, 56(2): 161-170.
[14] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[15] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.