Please wait a minute...
金属学报  2009, Vol. 45 Issue (2): 143-150    
  论文 本期目录 | 过刊浏览 |
冷轧Cu板动态压缩力学性能各向异性的研究
陈志永 1;才鸿年2;王富耻2;谭成文2;詹从堃1;刘楚明1
1. 中南大学材料科学与工程学院; 长沙410083
2. 北京理工大学材料科学与工程学院; 北京 100081
INVESTIGATION ON ANISOTROPY OF DYNAMIC COMPRESSIVE MECHANICAL PROPERTIES OF COLD--ROLLED Cu SHEET
CHEN Zhiyong1; CAI Hongnian2; WANG Fuchi2; TAN Chengwen2; ZHAN Congkun1; LIU Chuming1
1. School of Materials Science and Engineering; Central South University; Changsha 410083
2. School of Materials Science and Engineering; Beijing Institute of Technology; Beijing 100081
引用本文:

陈志永 才鸿年 王富耻 谭成文 詹从堃 刘楚明. 冷轧Cu板动态压缩力学性能各向异性的研究[J]. 金属学报, 2009, 45(2): 143-150.
, , , , , . INVESTIGATION ON ANISOTROPY OF DYNAMIC COMPRESSIVE MECHANICAL PROPERTIES OF COLD--ROLLED Cu SHEET[J]. Acta Metall Sin, 2009, 45(2): 143-150.

全文: PDF(2406 KB)  
摘要: 

利用Instron电子拉伸机和Split--Hopkinson压杆 (SHPB) 实验装置,研究了准静态和动态压缩条件下冷轧和退火Cu板法向、轧向、横向的力学性能. 不同应变率下的应力--应变曲线表明: 冷轧和退火Cu板的流变应力均随应变率的增加而增加, 表现出明显的应变率强化效应. 冷轧Cu板准静态和动态压缩力学性能均呈现明显的各向异性: 横向屈服强度最大, 轧向最小, 且低应变程度下的流变应力 也具有同样规律. 退火Cu板呈现近似各向同性. 考虑准静态和动态变形时可能的塑性变形机制, 基于微观晶体塑性变形理论的Taylor模型可定性地解释冷轧Cu板压缩力学性能的各向异性.

关键词 冷轧Cu板 织构 动态压缩力学性能 各向异性    
Abstract

The quasi–static and dynamic compressive mechanical properties of cold–rolled and annealed Cu sheets were investigated by means of Instron apparatus and Split–Hopkinson pressure bar (SHPB) technology, respectively. Cylindrical specimens of textured Cu sheets, which were cut with the
cylinder axes along the rolling direction (RD), transverse direction (TD) and normal direction (ND), were compressed at strain rates in the range of 10−3 to 103 s−1. The compressive stress-strain curves show all that the flow stresses for both cold rolled and annealed Cu sheets increase with the increase of strain rate and the obvious effect of strain rate hardening has been observed. The quasi–static and dynamic compressive mechanical properties of the cold rolled Cu sheet exhibit pronounced anisotropy, both the yield strength and flow stresses at the low deformation degree for the TD direction are the maximum, while those for the RD direction are the minimum. The properties of annealed Cu sheet are isotropic. Taking into account of possible mechanism for quasi–static and dynamic plastic deformation, the mechanical anisotropy of textured Cu sheets could be explained qualitatively by Taylor model based on the microscopic crystal plasticity theory.

Key wordscold--rolled Cu sheet    texture    dynamic compressive mechanical property    anisotropy
收稿日期: 2008-06-24     
ZTFLH: 

TG146

 
基金资助:

国家自然科学基金项目50871125和中国博士后科学基金项目2005037003资助

[1] Glenn T, Bradley W. Metall Trans, 1973; 4A: 2343
[2] Tang N Y, Niessen P, Pick R J, Worswick M J. Mater Sci Eng, 1991; A131: 153
[3] Andrade U R, Meyers M A, Chokshi A H. Scr Metall Mater, 1994; 30: 933
[4] Sanchez J C, Murr L E, Staudhammer K P. Acta Mater, 1997; 45: 3223
[5] Kiritani M, Satoh Y, Kizuka Y, Arakawa K, Ogasawara Y, Arai S, Shimomura Y. Philos Mag Lett, 1999; 79: 797
[6] Jia D, Ramesh K T, Ma E, Lu L, Lu K. Scr Mater, 2001; 45: 613
[7] Stevenson M E, Jones S E, Bradt R C. Mater Sci Res Int, 2003; 9: 187
[8] Gourdin W H, Lassila D H. Acta Metall Mater, 1991; 39: 2337
[9] Gourdin W H, Lassila D H. Mater Sci Eng, 1992; A151: 11
[10] Meyers M A, Andrade U R, Chokshi A R. Metall Mater Trans, 1995; 26A: 2881
[11] Nemat–Nasser S, Li Y L. Acta Mater, 1998; 46: 565
[12] Wang L L. Foundation of Stress Waves. Beijing: National Defense Industry Press, 2005: 52
(王礼立. 应力波基础. 北京: 国防工业出版社, 2005: 52)
[13] Bunge H J. Texture Analysis in Materials Science—Mathematical Methods. London: Butterworths, 1982: 47
[14] Klepaczko J R. J Phys Colloque, 1988; 49: 553
[15] Follansbee P S, Kocks U F. Acta Metall, 1988; 36: 81
[16] Tong W, Clifton R J, Huang S. J Mech Phys Solids, 1992;40: 1251
[17] Chin G Y, Mendorf D R, Hosford W F. Proc Roy Soc,1969; 309A: 433
[18] Hirsch J, LÜcke K, Hatherly M. Acta Metall, 1988; 36:2905
[19] El–Danaf E, Kalidindi S R, Doherty R D. Int J Plast,2001; 17: 1245
[20] Szczerba M S, Bajor T, Tokarski T. Philos Mag, 2004; 84:481
[21] Chen Z Y, Zhang X M, Liu C M, Zhou Z P, Li S Y. J Mater Sci, 2002; 37: 2843
[22] Sachs E. Z Ver Deut Ing, 1928; 72: 734
[23] Taylor G I. J Inst Met, 1938; 62: 307

[24] Van Houtte P. In: Nagashima S ed., Proc 6th Int Conf on Textures of Materials. Tokyo: Iron and Steel Institute of Japan, 1981: 428
[25] Fortunier R, Driver J H. Acta Metall, 1987; 35: 509
[26] Mao W M. Mater Sci Eng, 1998; A257: 171
[27] Bishop J F W, Hill R. Philos Mag, 1951; 42: 414
[28] Bishop J F W, Hill R. Philos Mag, 1951; 42: 1298
[29] Chen Z Y, Cai H N, Zhang X M, Wang F C, Tan C W. Sci China, 2006; 49E: 521

[1] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[3] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[4] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[5] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[6] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[7] 卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.
[8] 王迪, 黄锦辉, 谭超林, 杨永强. 激光增材制造过程中循环热输入对组织和性能的影响[J]. 金属学报, 2022, 58(10): 1221-1235.
[9] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[10] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[11] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[12] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[13] 毕胜, 李泽琛, 孙海霞, 宋保永, 刘振宇, 肖伯律, 马宗义. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能[J]. 金属学报, 2021, 57(1): 71-81.
[14] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[15] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.