Please wait a minute...
金属学报  2017, Vol. 53 Issue (5): 575-582    DOI: 10.11900/0412.1961.2016.00500
  论文 本期目录 | 过刊浏览 |
1 北京科技大学新材料技术研究院 北京 100083
2 航天材料及工艺研究所 北京 100076,3 中国科学院宁波材料技术与工程研究所 宁波 315201
3 中国科学院宁波材料技术与工程研究所 宁波 315201
Effect of Alternating Current on Corrosion Behavior of X80 Pipeline Steel in Near-Neutral Environment
Hongxia WAN1,Dongdong SONG1,2,Zhiyong LIU1,Cuiwei DU1(),Xiaogang LI1,3
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 Aerospace Research Institute of Materials & Processing Technology, Beijing 100076, China
3 Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
全文: PDF(8368 KB)   HTML


关键词 X80管线钢交流电近中性环境腐蚀行为    

The rapid development of energy, electricity, and transportation industries has created a market for steel pipes; however, buried steel pipelines near high-voltage transmission lines and electrified railways often experience alternating current (AC) corrosion at the damaged coating of pipelines; such phenomenon is mostly due to the resistance between the capacitance and inductance coupling, especially for long-distance pipelines in parallel operation. AC corrosion can cause pipeline corrosion perforation and stress corrosion cracking (SCC) in some cases, which has been a vital threat to the pipeline safety. In this work, the influence of AC on corrosion behavior of X80 pipeline steel was investigated in NS4 near-neutral solution by data acquisition technique, electrochemical test, immersion tests and surface analysis techniques. Results show that with the increasing of AC density, corrosion morphology changed from uniform corrosion to localized corrosion with many pits. Under the full AC interference, X80 steel occurred cathodic and anodic polarization which resulted in iron dissolution and hydrogen precipitation. The negative half wave AC would lead to hydrogen evolution and hydrogen induced anodic dissolution, the pits in X80 steel surface present sharp. However, under disturbance of positive half-wave AC, only anodic dissolution occurred and the pitting appeared spill shape and smoothly. Under various AC waveform interference, the corrosion products of X80 steel surface were different. Under full AC wave and positive half-wave interference, the corrosion products were loose, had have no α-FeOOH and occurred cracks; however, under negative half-wave AC interference, the corrosion products were denser and contained α-FeOOH which has protective effect on substrates.

Key wordsX80 pipeline steel    alternating current    near-neutral environment    corrosion behavior
收稿日期: 2016-11-10      出版日期: 2017-02-14


万红霞,宋东东,刘智勇,杜翠薇,李晓刚. 交流电对X80钢在近中性环境中腐蚀行为的影响[J]. 金属学报, 2017, 53(5): 575-582.
Hongxia WAN,Dongdong SONG,Zhiyong LIU,Cuiwei DU,Xiaogang LI. Effect of Alternating Current on Corrosion Behavior of X80 Pipeline Steel in Near-Neutral Environment. Acta Metall Sin, 2017, 53(5): 575-582.

链接本文:      或

图1  交流电干扰下X80钢电化学装置示意图
图2  交流干扰下X80钢浸泡实验示意图
图3  X80钢在全波、负半波和正半波作用下数据采集器采集的波形
图4  X80钢在全波、负半波和正半波交流电作用下的电位
图5  X80钢在全波、负半波和正半波交流电作用下的电流密度
图6  X80钢在全波、负半波和正半波不同交流电密度作用下浸泡48 h后的腐蚀形貌
图7  X80钢在全波、负半波和正半波交流电作用下带锈形貌和腐蚀产物分析
[1] Tribollet B, Meyer M.2-AC-induced corrosion of underground pipelines [A]. Orazem M. Undergr Pipeline Corrosion [M]. Amsterdam: Woodhead Publishing Limited, 2014: 35
[2] Roger F.Testing and mitigation of AC corrosion on 8 line: a field study [A]. Corrosion 2004[C]. New Orleans, Louisiana: NACE International, 2004
[3] Zhang R, Vairavanathan P R, Lalvani S B.Perturbation method analysis of AC-induced corrosion[J]. Corros. Sci., 2008, 50: 1664
[4] Wakelin R G, Sheldon C.Investigation and mitigation of AC corrosion on a 300 MM natural gas pipeline [A]. Corrosion 2004[C]. New Orleans, Louisiana: NACE International, 2004: 972
[5] Zhu M, Du C W, Li X G, et al.Effect of AC current density on stress corrosion cracking behavior of X80 pipeline steel in high pH carbonate/bicarbonate solution[J]. Electrochim. Acta, 2014, 117: 351
[6] Tang D Z, Du Y X, Li X X, et al.Effect of alternating current on the performance of magnesium sacrificial anode[J]. Mater. Des., 2016, 93: 133
[7] Zhu M, Du C W, Li X G, et al.Effect of AC on stress corrosion cracking behavior and mechanism of X80 pipeline steel in carbonate/bicarbonate solution[J]. Corros. Sci., 2014, 87: 224
[8] Zhu M, Liu Z Y, Du C W, et al.Effects of alternating current on corrosion behavior of X80 pipeline steel in acid soil environment[J]. J. Mater. Eng., 2015, 43: 85
[8] (朱敏, 刘智勇, 杜翠薇等. 交流电对X80钢在酸性土壤环境中腐蚀行为的影响[J]. 材料工程, 2015, 43: 85)
[9] Lalvani S B, Zhang G.The corrosion of carbon steel in a chloride environment due to periodic voltage modulation: Part I[J]. Corros. Sci., 1995, 37: 1567
[10] Jones D A.Effect of alternating current on corrosion of low alloy and carbon steels[J]. Corrosion, 1978, 34: 428
[11] Kulman F E.Effects of alternating currents in causing corrosion[J]. Corrosion, 1961, 17: 34
[12] Bosch R W, Bogaerts W F.A theoretical study of AC-induced corrosion considering diffusion phenomena[J]. Corros. Sci., 1998, 40: 323
[13] Nielsen L V.Role of alkalization in AC induced corrosion of pipelines and consequences hereof in relation to CP requirements [A]. Corrosion 2005[C]. Houston, Texas: NACE International, 2005
[14] Xu L Y, Su X, Yin Z X, et al.Development of a real-time AC/DC data acquisition technique for studies of AC corrosion of pipelines[J]. Corros. Sci., 2012, 61: 215
[15] Lalvani S B, Lin X A.A theoretical approach for predicting AC-induced corrosion[J]. Corros. Sci., 1994, 36: 1039
[16] Lalvani S B, Lin X.A revised model for predicting corrosion of materials induced by alternating voltages[J]. Corros. Sci., 1996, 38: 1709
[17] Fu A Q, Cheng Y F.Effects of alternating current on corrosion of a coated pipeline steel in a chloride-containing carbonate/bicarbonate solution[J]. Corros. Sci., 2010, 52: 612
[18] Linhardt P, Ball G.AC corrosion: results from laboratory investigations and from a failure analysis [A]. Proceedings of the NACE International Corrosion/2006 Conference Papers on CD-ROM[C]. San Diego, CA: NACE, 2006
[19] Goidanich S, Lazzari L, Ormellese M.AC corrosion. Part 2: Parameters influencing corrosion rate[J]. Corros. Sci., 2010, 52: 916
[20] Jiang Z T, Du Y X, Dong L, et al.Effect of AC current on corrosion potential of Q235 steel[J]. Acta Metall. Sin., 2011, 47: 997
[20] (姜子涛, 杜艳霞, 董亮等. 交流电对Q235钢腐蚀电位的影响规律研究[J]. 金属学报, 2011, 47: 997)
[21] Yang Y, Li Z L, Wen C.Effects of alternating current on X70 steel morphology and electrochemical behavior[J]. Acta Metall. Sin., 2013, 49: 43
[21] (杨燕, 李自力, 文闯. 交流电对X70钢表面形态及电化学行为的影响[J]. 金属学报, 2013, 49: 43)
[22] Wan H X, Du C W, Liu Z Y, et al.The effect of hydrogen on stress corrosion behavior of X65 steel welded joint in simulated deep sea environment[J]. Ocean Eng., 2016, 114: 216
[23] Li M C, Cheng Y F.Mechanistic investigation of hydrogen-enhanced anodic dissolution of X-70 pipe steel and its implication on near-neutral pH SCC of pipelines[J]. Electrochim. Acta, 2007, 52: 8111
[24] Fu A Q, Cheng Y F.Effect of alternating current on corrosion and effectiveness of cathodic protection of pipelines[J]. Can. Metall. Quart., 2012, 51: 81
[25] Zhang G A, Cheng Y F.On the fundamentals of electrochemical corrosion of X65 steel in CO2-containing formation water in the presence of acetic acid in petroleum production[J]. Corros. Sci., 2009, 51: 87
[26] Kuang D, Cheng Y F.Understand the AC induced pitting corrosion on pipelines in both high pH and neutral pH carbonate/bicarbonate solutions[J]. Corros. Sci., 2014, 85: 304
[1] 张体明, 赵卫民, 蒋伟, 王永霖, 杨敏. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J]. 金属学报, 2019, 55(2): 258-266.
[2] 张广平, 陈红蕾, 罗雪梅, 张滨. 微纳米尺度金属导电材料热疲劳研究进展[J]. 金属学报, 2018, 54(3): 357-366.
[3] 张苏强,赵洪运,舒凤远,王国栋,贺文雄. 焊接热循环对Q315NS钢在H2SO4溶液中腐蚀行为的影响[J]. 金属学报, 2017, 53(7): 808-816.
[4] 李宁,张蓉,张利民,邢辉,殷鹏飞,吴耀燕. 低压交流电脉冲下Al-7%Si合金晶粒细化机理研究[J]. 金属学报, 2017, 53(2): 192-200.
[5] 韩林原, 李旋, 储成林, 白晶, 薛烽. 流场环境中AZ31镁合金的腐蚀行为研究[J]. 金属学报, 2017, 53(10): 1347-1356.
[6] 刘智勇,李宗书,湛小琳,皇甫文珠,杜翠薇,李晓刚. X80钢在鹰潭土壤模拟溶液中应力腐蚀裂纹扩展行为机理*[J]. 金属学报, 2016, 52(8): 965-972.
[7] 韦天国,林建康,龙冲生,陈洪生. 蒸汽中的溶解氧对锆合金腐蚀行为的影响*[J]. 金属学报, 2016, 52(2): 209-216.
[8] 张体明,王勇,赵卫民,唐秀艳,杜天海,杨敏. 高压煤制气环境下X80钢及热影响区的氢渗透参数研究[J]. 金属学报, 2015, 51(9): 1101-1110.
[9] 程健, 谢飞, 孙力, 朱丽曼, 潘建伟. 交流电场增强45钢中低温粉末法渗硼特性[J]. 金属学报, 2014, 50(11): 1311-1318.
[10] 刘玉,李焰,李强. 阴极极化对X80管线钢在模拟深海条件下氢脆敏感性的影响[J]. 金属学报, 2013, 49(9): 1089-1097.
[11] 周小卫,沈以赴. Ni-CeO2纳米镀层在酸性NaCl溶液中的腐蚀行为及电化学阻抗谱特征[J]. 金属学报, 2013, 49(9): 1121-1130.
[12] 范林,刘智勇,杜翠薇,李晓刚. X80管线钢高pH应力腐蚀开裂机制与电位的关系[J]. 金属学报, 2013, 49(6): 689-698.
[13] 王新华,李秀刚,李强,黄福祥,李海波,杨建. X80管线钢板中条串状CaO-Al2O3系非金属夹杂物的控制[J]. 金属学报, 2013, 49(5): 553-561.
[14] 郝雪卉,董俊华,魏洁,柯伟,王长罡,徐小连,叶其斌. AH32耐蚀钢显微组织对其腐蚀行为的影响[J]. 金属学报, 2012, 48(5): 534-540.
[15] 姜子涛 杜艳霞 董亮 路民旭. 交流电对Q235钢腐蚀电位的影响规律研究[J]. 金属学报, 2011, 47(8): 997-1002.