Please wait a minute...
金属学报  2013, Vol. 49 Issue (10): 1264-1268    DOI: 0.3724/SP.J.1037.2013.00284
  论文 本期目录 | 过刊浏览 |
Cu/Cu(Ge, Zr)/SiO2/Si多层膜界面可控反应及热稳定性研究
张彦坡1),任丁1),林黎蔚1),杨斌1),王珊玲2),刘波1),徐可为3)
1) 四川大学原子核科学技术研究所 辐射物理与技术教育部重点实验室, 成都 610064
2) 四川大学分析测试中心, 成都 610064
3) 西安交通大学材料科学与工程学院金属材料强度国家重点实验室, 西安 710049
CONTROLLED REACTION ON INTERFACE OF Cu/Cu(Ge, Zr)/SiO2/Si MULTILAYER FILM AND ITS THERMAL STABILITY
ZHANG Yanpo1), REN Ding1), LIN Liwei1),YANG Bin1), WANG Shanling2),LIU Bo1), XU Kewei3)
1) Key Laboratory of Radiation Physics and Technology, Ministry of Education,Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064
2) Center of Analysis and Test, Sichuan University, Chengdu 610064
3) State Key Laboratory for Mechanical Behavior of Materials,College of Materials Science and Engineering,Xi'an Jiaotong University, Xi'an 710049
引用本文:

张彦坡,任丁,林黎蔚,杨斌,王珊玲,刘波,徐可为. Cu/Cu(Ge, Zr)/SiO2/Si多层膜界面可控反应及热稳定性研究[J]. 金属学报, 2013, 49(10): 1264-1268.
ZHANG Yanpo, REN Ding, LIN Liwei, YANG Bin, WANG Shanling, LIU Bo1), XU Kewei. CONTROLLED REACTION ON INTERFACE OF Cu/Cu(Ge, Zr)/SiO2/Si MULTILAYER FILM AND ITS THERMAL STABILITY[J]. Acta Metall Sin, 2013, 49(10): 1264-1268.

全文: PDF(999 KB)  
摘要: 

利用多靶磁控溅射技术在SiO2/Si基体上沉积Cu/Cu(Ge, Zr)多层薄膜,采用四探针仪(FPPT), X射线衍射仪(XRD), 高分辨透射电镜(HRTEM),X射线光电子能谱(XPS)和原位纳米电子束探针能谱(EDS)表征多层薄膜退火前后电阻率、微观结构和界面成分的演变及行为.结果表明, 在低温退火阶段(<200℃), Cu(Ge, Zr)膜层中Ge与Cu选择性反应形成低阻Cu3Ge相,有效抑制Cu与Si的早期扩散; 在高温下(>450℃), Zr原子在Cu3Ge/SiO2界面析出并与SiO2层进一步反应形成稳定非晶ZrOx/ZrSiyOx化合物.Cu(Ge, Zr)薄膜中异质原子及与相邻膜层间分步选择性自反应合成高热稳Cu3Ge/ZrOx/ZrSiyOx复合阻挡层, 使Cu/Cu(Ge, Zr)/SiO2/Si多层膜具有高热稳定性.

关键词 Cu(Ge, Zr)薄膜界面反应选择性自反应热稳定性    
Abstract

A self-formation barrier method using CuX (X=Mn, Ti, Zr, Ru, RuN, WN, Ge, etc.)alloys with various concentration solutes has been extensively investigated to meet the requirements of low sheet resistivity, ultra-thin and high thermal stability for Cu metallization. However, intolerable reactions would take place at the interface of the Cu alloy layer and SiO2/Si layer before the processing temperature reaches high enough to drive the mass migration of alloy elements to interface. In fact, the reaction of Cu alloy layer with SiO2/Si layer is almost unavoidable due to that Cu diffuses very fast in Si substrate below 200℃. Among those Cu-based alloys, CuGe alloy system has received particular   attention because Cu can directly react with Ge below 150℃ and forms ε-Cu3Ge films which exhibit a remarkable resistivity (5.5 μΩ·cm), and the Cu3Ge films also possess high oxidation resistance and interface bonding performance, so can be used as a good diffusion barrier for Cu as well. However, two major problems prevent it from being put into practice. The first is that the mutual diffusion occures between the Cu3Ge films and the Si substrates above 400℃, and lead to a notable increase in resistivity. The second one is that the germanide film degrades morphologically at 350℃. Therefore, according to the deficiencies existing in these Cu-based alloys, the main objective of the present research aims at taking advantage of the selective reaction characteristic of Cu, Ge and Zr elements to achieve a controlled interfacereaction behavior of Cu/Cu(Ge, Zr)/SiO2/Si multilayer. The multilayer structure was characterized by FPPT, XRD, TEM, XPS and EDS. The results showed that the reaction sequence of the atoms in Cu(Ge, Zr) films and adjacent layers affected the thermal stability of Cu/Cu(Ge, Zr)/SiO2/Si multilayer structure. Under the temperature of 200℃, Ge atoms reacted selectively with Cu film and produced ε-Cu3Ge phase which exhibitted a remarkably low metallic resistivity, and the Cu3Ge phase could be used as a good diffusion barrier. With further increasing annealing temperature (above 450℃), Zr atoms precipitated at the interface or grain boundary of Cu3Ge layer and reacted with silicon oxide further to form stable and ultra-thin amorphous ZrOx/ZrSiyOx compounds. So the Cu3Ge layer combined with the amorphous ZrOx/ZrSiyOx compounds provided superior barrier properties in reducing Cu diffusion into Si at high annealed temperature.

Key wordsCu(Ge, Zr) film    interface reaction    selectable reaction    thermal stability
收稿日期: 2013-05-24     
基金资助:

国家自然科学基金项目11075112和11005076, 高等学校博士点专项基金项目20100181120112以及科技部国际热核聚变实验堆计划专项项目2011GB110005资助\par

作者简介: 张彦坡, 男, 1987年生, 硕士生

[1] Semiconductor Industry Association. 2005 International Technology Roadmap for Semiconductors,TX, USA: International SEMATECH, 2005: 1

[2] Lozano J G, Lozano-Perez S, Bogan J, Wang Y C, Brennan B, Nellist P D, Hughes G.Appl Phys Lett, 2011; 98: 123112
[3] Haneda M, lijima J, Koike J. Appl Phys Lett, 2007; 90: 252107
[4] Chu J P, Lin C H, John V S. Appl Phys Lett, 2007; 91: 132109
[5] Zhan Y Z, Peng D, She J. Metall Mater Trans, 2012; 43: 4015
[6] Chu J P, Lin C H. Appl Phys Lett, 2005; 87: 211902
[7] Wang Y, Cao F, Zhang M L, Zhang T. Acta Mater, 2011; 59: 400
[8] Chen D, Dong J F, Ma G Z. J Cent South Univ, 2013; 20: 1137
[9] Liu C J, Chen J S. Appl Phys Lett, 2002; 80: 2678
[10] Liu B, Song Z X, Li Y H, Xu K W. Appl Phys Lett, 2008; 93: 174108
[11] Borek M A, Oktyabrsky S, Aboelfotoh M O, Narayan J. Appl Phys Lett, 1996; 69: 3560
[12] Aboelfotoh M O, Svensson B G. Phys Rev, 1991; 44B: 12742
[13] Doyle J P, Svensson B G, Aboelfotoh M O. J Appl Phys, 1996; 80: 2530
[14] Aboelfotoh M O, Krusin-Elbaum L. J Appl Phys, 1991; 75: 3382
[15] Aboelfotoh M O, Tawancy H M. J Appl Phys, 1994; 75: 2441
[16] Doyle J P, Svensson B G, Aboelfotoh M O, Hudner J. Phys Scr, 1994; 54: 297
[17] Gaudet S, Detavernier C, Kellock A J, Lavoie C. J Vac Sci Technol, 2006; 24: 474
[18] Lanford W A, Ding P J, Wang W, Hymes S, Murarka S P. Mater Chem Phys, 1995; 41: 192
[19] Liu B, Song Z X, Xu K W. Surf Coat Technol, 2007; 201: 5419
[20] Chromik R R, Neils W K, Cotts E J. J Appl Phys, 1999; 86: 4273
[21] Dean J A , translated by Shang J F. Lange's Handbook of Chemistry.Beijing: Science Press, 1991: 922
(Dean J A著, 尚久方译. 兰氏化学手册. 北京: 科学出版社, 1991: 922)
[22] Barin I. Thermochemical Data of Pure Substances. 3rd Ed., New York: VCH, 1995: 405
[23] Wang S Q, Mayer J W. J Appl Phys, 1988; 64: 4711
[24] Aboelfotoh M O, Borek M A, Narayan J. J Appl Phys, 2000; 87: 365

[25] Solberg J K. Acta Crystallogr, 1978; 34A: 684

[1] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[2] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[3] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[4] 宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[5] 聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
[6] 王一涵, 原园, 喻嘉彬, 吴宏辉, 吴渊, 蒋虽合, 刘雄军, 王辉, 吕昭平. 纳米晶合金热稳定性的熵调控设计[J]. 金属学报, 2021, 57(4): 403-412.
[7] 王晓波, 王墉哲, 程旭东, 蒋蓉. 大气条件下AlCrON基光谱选择性吸收涂层的热稳定性[J]. 金属学报, 2021, 57(3): 327-339.
[8] 王超, 张旭, 王玉敏, 杨青, 杨丽娜, 张国兴, 吴颖, 孔旭, 杨锐. SiCf/Ti65复合材料界面反应与基体相变机理[J]. 金属学报, 2020, 56(9): 1275-1285.
[9] 彭艳艳, 余黎明, 刘永长, 马宗青, 刘晨曦, 李冲, 李会军. 650 ℃时效对9Cr-ODS钢显微组织和性能的影响[J]. 金属学报, 2020, 56(8): 1075-1083.
[10] 张志杰, 黄明亮. 原位研究Cu/Sn-37Pb/Cu微焊点液-固电迁移行为[J]. 金属学报, 2020, 56(10): 1386-1392.
[11] 黄宇, 成国光, 李世健, 代卫星. Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究[J]. 金属学报, 2019, 55(12): 1487-1494.
[12] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.
[13] 邱丰, 佟昊天, 沈平, 丛晓霜, 王轶, 姜启川. 综述:SiC/Al界面反应与界面结构演变规律及机制[J]. 金属学报, 2019, 55(1): 87-100.
[14] 赵宁,邓建峰,钟毅,殷录桥. 热迁移下Ni/Sn-xCu/Ni微焊点钎焊界面金属间化合物的演变[J]. 金属学报, 2017, 53(7): 861-868.
[15] 张志杰,黄明亮. Cu/Sn-52In/Cu微焊点液-固电迁移行为研究[J]. 金属学报, 2017, 53(5): 592-600.