Please wait a minute...
金属学报  2013, Vol. 49 Issue (10): 1255-1263    DOI: 10.3724/SP.J.1037.2013.00188
  论文 本期目录 | 过刊浏览 |
高温退火对铸态和挤压态Mg97Y2Zn1合金中长周期堆垛有序结构形态的影响
刘欢,薛烽,白晶,周健,孙扬善
东南大学材料科学与工程学院江苏省先进金属材料高技术研究重点实验室, 南京 211189
EFFECTS OF HIGH TEMPERATURE ANNEALING ON MORPHOLOGY OF LONG PERIOD STACKING ORDERED STRUCTURES IN AS-CASE AND AS-EXTRUDED Mg97Y2Zn1ALLOY
 
LIU Huan, XUE Feng, BAI Jing, ZHOU Jian, SUN Yangshan
Jiangsu Key Lab for Advanced Metallic Materials, College of Materials Science and Engineering, Southeast University,Nanjing 211189
引用本文:

刘欢,薛烽,白晶,周健,孙扬善. 高温退火对铸态和挤压态Mg97Y2Zn1合金中长周期堆垛有序结构形态的影响[J]. 金属学报, 2013, 49(10): 1255-1263.
LIU Huan, XUE Feng, BAI Jing, ZHOU Jian, SUN Yangshan. EFFECTS OF HIGH TEMPERATURE ANNEALING ON MORPHOLOGY OF LONG PERIOD STACKING ORDERED STRUCTURES IN AS-CASE AND AS-EXTRUDED Mg97Y2Zn1ALLOY[J]. Acta Metall Sin, 2013, 49(10): 1255-1263.

全文: PDF(4095 KB)  
摘要: 

研究了铸态和挤压态Mg97Y2Zn1合金中长周期堆垛有序结构在高温退火时的组织演化.结果表明, 铸态合金由网状的18R-LPSO相、堆垛层错、α-Mg和少量的Mg24Y5颗粒组成.经过挤压后, 第二相沿挤压方向呈带状分布, 同时在基体内析出大量尺寸细小的14H层片.铸态合金退火初期, 14H结构在18R周围的层错区内大量形核,随后18R沿着层错向14H层片转变, 14H层片不断增厚和增长,并在退火30 h时体积达到最大. 此后继续退火时, 18R向14H的转变和14H的溶解同时进行,在退火200 h的样品基体内部几乎不存在14H层片, 只在18R相周围有少量残余14H结构.对于挤压态合金, 由于挤压时大量形核位置的引入, 14H晶核在合金中已大量存在.退火时, 18R结构不断溶解于基体中直至全部消失,14H层片则随退火时间的延长连续增长和增厚. 当14H层片覆盖基体后,继续延长退火时间, 14H层片的增长受到α-Mg晶界阻碍,只发生粗化以及溶解过程. 在退火200 h的挤压态样品中, 只剩下粗化的14H结构.

关键词 Mg97Y2Zn1合金长周期堆垛有序结构高温退火18R14H    
Abstract

Recently, there has been increasing interest in the transformation process between 18R and 14H long period stacking ordered (LPSO) structures in Mg-Y-Zn alloys. However, the detailed phase transformation associated with 18R and 14H structures remains to be established. In this work, the effects of high temperature annealing on the microstructure evolutions of LPSO structure of as-cast and as-extruded Mg97Y2Zn1 alloy were investigated by OM, SEM and TEM. The results show that the as-cast alloy is mainly composed of network-shaped 18R-LPSO phase, stacking faults (SFs), α-Mg matrix and a small number of Mg24Y5 particles. After extrusion, the 18R phase is rearranged in lines along the direction of extrusion and plenty of fine 14H lamella is precipitated in the matrix. During the early stage of annealing, the 14H phase in the as-cast alloy is nucleated massively in the SFs regions around 18R structure. With transformations from the 18R phase, the 14H lamella develops along the directions of length and thickness, and their volume fraction reaches to the maximum when the alloy is annealed for 30 h. As the annealing process continues, the dissolution of 14H phase into the matrix proceeds at the same time. There is almost no 14H lamella present in the center ofα-Mg matrix but a few remains near the 18R phase in the microstructure of the specimen annealed for 200 h. In case of the as-extruded alloy, however, abundant fine 14H lamella has already been introduced during the hot extrusion. When the annealing treatment is operated, the 18R phase keeps dissolving into the matrix until disappearing completely, while the 14H lamella grows continuously. When the whole matrix is covered by 14H lamella, the development of 14H lamella along the length direction is hindered by the grain boundaries. And only coarsening 14H lamella is observed in the as-extruded alloy sample annealed for 200 h.

Key wordsMg97Y2Zn1 alloy    long period stacking ordered structure    high temperature annealing    18R    14H
收稿日期: 2013-04-15     
基金资助:

教育部博士点基金项目20120092120048和江苏省自然科学基金项目BK2010392资助

作者简介: 刘欢, 男, 1987年生, 博士生

[1] Zhen R, Sun Y S, Bai J, Sun J J, Pi J H. Acta Metall Sin, 2012; 48: 733

(甄睿, 孙扬善, 白晶, 孙晶晶, 皮锦红. 金属学报, 2012; 48: 733)
[2] Wang J F, Song P F, Zhou X E, Pan F S. J Mater Sci, 2012; 47: 6716
[3] Kawamura Y, Yamasaki M. Mater Trans, 2007; 48: 2986
[4] Kawamura Y, Kasahara T, Izumi S, Yamasaki M. Scr Mater, 2006; 55: 453
[5] Itoi T, Takahashi K, Moriyama H, Hirohashi M. Scr Mater, 2008; 59: 1155
[6] Yokobayashi H, Kishida K, Inui H, Yamasaki M, Kawamura Y. Acta Mater, 2011; 59: 7287
[7] Shao X H, Yang Z Q, You J H, Qiu K Q, Ma X L. J Alloys Compd, 2011; 509: 7221
[8] Itoi T, Seimiya T, Kawamura Y, Hirohashi M. Scr Mater, 2004; 51: 107
[9] Bi G L, Fang D Q, Zhao L, Lian J S, Jiang Q, Jiang Z H. Mater Sci Eng, 2011; A528: 3609
[10] Matsuda M, Ii S, Kawamura Y, Ikuhara Y, Nishida M. Mater Sci Eng, 2005; A393: 269
[11] Abe E, Kawamura Y, Hayashi K, Inoue A. Acta Mater, 2002; 50: 3845
[12] Nishida M, Kawamura Y, Yamamuro T. Mater Sci Eng, 2004; A375-377: 1217
[13] Chino Y, Mabuchi M, Hagiwara S, Iwasaki H, Yamamoto A, Tsubakino H.Scr Mater, 2004; 51: 711
[14] Zhang S, Yuan G Y, Lu C, Ding W J. J Alloys Compd, 2011; 509: 3515
[15] Gao Y, Wang Q D, Gu J H, Zhao Y, Tong Y, Yin D D. J Alloys Compd, 2009; 477: 374
[16] Liu H, Xue F, Bai J, Zhou J, Sun Y S. Acta Metall Sin, 2013; 49: 236
(刘欢, 薛烽, 白晶, 周健, 孙扬善. 金属学报, 2013; 49: 236)
[17] Wu Y J, Lin D L, Zeng X Q, Peng L M, Ding W J. J Mater Sci, 2009; 44: 1607
[18] Suzuki M, Kimura T, Koike J, Maruyama K. Scr Mater, 2003; 48: 997
[19] Wang J F, Song P F, Gao S, Huang X F, Shi Z Z, Pan F S. Mater Sci Eng, 2011; A528: 5914
[20] Yamasaki M, Sasaki M, Nishijima M, Hiraga K, Kawamura Y. Acta Mater, 2007; 55: 6798
[21] Zhu Y M, Morton A J, Nie J F. Acta Mater, 2010; 58: 2936
[22] Zhu Y M, Weyland M, Morton A J, Oh-ishi K, Hono K, Nie J F. Scr Mater, 2009; 60: 980
[23] Zhang J S, Chen C J, Que Z P, Cheng W L, Xu J D, Kang J J. Mater Sci Eng, 2012; A552: 81
[24] Shao X H, Yang Z Q, Ma X L. Acta Mater, 2010; 58: 4760
[25] Zhu Y M, Morton A J, Nie J F. Acta Mater, 2012; 60: 6562
[26] Liu K, Zhang J F, Tang D X, Rokhlin L L, Elkin F M, Meng J. Mater Chem Phys, 2009; 117: 107
[27] Hagihara K, Kinoshita A, Sugino Y, Yamasaki M, Kawamura Y, Yasuda H Y,Umakoshi Y. Acta Mater, 2010; 58: 6282
[1] 刘欢,薛烽,白晶,周健,孙扬善. 含长周期结构Mg-(2, 3, 4)Y-1Zn合金的显微组织和力学性能[J]. 金属学报, 2013, 49(2): 236-242.
[2] 董瑜亮 闫旭波 赵升升 宫骏 孙超. (Ti, Al)N/Ti2AlN涂层的制备[J]. 金属学报, 2010, 46(6): 743-747.
[3] 张松 袁广银 卢晨 丁文江. 冷却速率对GWZ1032K合金中14H-LPSO结构形成的影响[J]. 金属学报, 2010, 46(10): 1192-1199.