|
|
基于应变匹配的高性能金属纳米复合材料研究进展 |
崔立山( ), 姜大强 |
中国石油大学(北京)理学院 北京 102200 |
|
Progress in High Performance Nanocomposites Based ona Strategy of Strain Matching |
Lishan CUI( ), Daqiang JIANG |
College of Science, China University of Petroleum-Beijing, Beijing 102200, China |
引用本文:
崔立山, 姜大强. 基于应变匹配的高性能金属纳米复合材料研究进展[J]. 金属学报, 2019, 55(1): 45-58.
Lishan CUI,
Daqiang JIANG.
Progress in High Performance Nanocomposites Based ona Strategy of Strain Matching[J]. Acta Metall Sin, 2019, 55(1): 45-58.
[1] | Wong E W, Sheehan P E, Lieber C M.Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes[J]. Science, 1997, 277: 1971 | [2] | Zhu T, Li J.Ultra-strength materials[J]. Prog. Mater. Sci., 2010, 55: 710 | [3] | Yue Y H, Liu P, Zhang Z, et al.Approaching the theoretical elastic strain limit in copper nanowires[J]. Nano Lett., 2011, 11: 3151 | [4] | Koziol K, Vilatela J, Moisala A, et al.High-performance carbon nanotube fiber[J]. Science, 2007, 318: 1892 | [5] | Dzenis Y.Materials science: Structural nanocomposites[J]. Science, 2008, 319: 419 | [6] | Podsiadlo P, Kaushik A K, Arruda E M, et al.Ultrastrong and stiff layered polymer nanocomposites[J]. Science, 2007, 318: 80 | [7] | Coleman J N, Khan U, Gun'ko Y K. Mechanical reinforcement of polymers using carbon nanotubes[J]. Adv. Mater., 2006, 18: 689 | [8] | Thilly L, van Petegem S, Renault P O, et al. A new criterion for elasto-plastic transition in nanomaterials: Application to size and composite effects on Cu-Nb nanocomposite wires[J]. Acta Mater., 2009, 57: 3157 | [9] | Vidal V, Thilly L, van Petegem S, et al. Plasticity of nanostructured Cu-Nb-based wires: Strengthening mechanisms revealed by in situ deformation under neutrons[J]. Scr. Mater., 2009, 60: 171 | [10] | Ayd?ner C C, Brown D W, Mara N A, et al.In situ x-ray investigation of freestanding nanoscale Cu-Nb multilayers under tensile load[J]. Appl. Phys. Lett., 2009, 94: 031906 | [11] | Thilly L, Renault P O, Vidal V, et al.Plasticity of multiscale nanofilamentary Cu/Nb composite wires during in situ neutron diffraction: Codeformation and size effect[J]. Appl. Phys. Lett., 2006, 88: 191906 | [12] | Hao S J, Cui L S, Jiang D Q, et al.A transforming metal nanocomposite with large elastic strain, low modulus, and high strength[J]. Science, 2013, 339: 1191 | [13] | Wang S, Cui L, Hao S, et al.Locality and rapidity of the ultra-large elastic deformation of Nb nanowires in a NiTi phase-transforming matrix[J]. Sci. Rep., 2014, 4: 6753 | [14] | Liu Z Y.Study of structure and functional property of Nb/NiTi composite [D]. Beijing: China University of Petroleum, 2014(刘镇洋. Nb纳米线/NiTi记忆合金复合材料结构与功能特性研究 [D]. 北京: 中国石油大学(北京), 2014) | [15] | Zang K T, Mao S C, Cai J X, et al.Revealing ultralarge and localized elastic lattice strains in Nb nanowires embedded in NiTi matrix[J]. Sci. Rep., 2015, 5: 17530 | [16] | Hao S J, Cui L S, Wang H, et al.Retaining large and adjustable elastic strains of kilogram-scale Nb nanowires[J]. ACS Appl. Mater. Interfaces, 2016, 8: 2917 | [17] | Hao S J, Cui L S, Guo F M, et al.Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect[J]. Sci. Rep., 2015, 5: 8892 | [18] | Hao S J, Cui L S, Jiang D Q, et al.Nanostructured Nb reinforced NiTi shape memory alloy composite with high strength and narrow hysteresis[J]. Appl. Phys. Lett., 2013, 102: 231905 | [19] | Zhang J S, Cui L S, Jiang D Q, et al.A biopolymer-like metal enabled hybrid material with exceptional mechanical prowess[J]. Sci. Rep., 2015, 5: 8357 | [20] | Hao S J, Liu Y N, Ren Y, et al.Achieving superior two-way actuation by the stress-coupling of nanoribbons and nanocrystalline shape memory alloy[J]. ACS Appl. Mater. Interfaces, 2016, 8: 16310 | [21] | Hao S J, Cui L S, Wang Y D, et al.The ultrahigh mechanical energy-absorption capability evidenced in a high-strength NbTi-NiTi nanocomposite[J]. Appl. Phys. Lett., 2011, 99: 024102 | [22] | Zhang J S, Liu Y N, Ren Y, et al.In situ synchrotron X-ray diffraction study of deformation behavior and load transfer in a Ti2Ni-NiTi composite[J]. Appl. Phys. Lett., 2014, 105: 041910 | [23] | Jiang D Q, Hao S J, Zhang J S, et al. In situ synchrotron investigation of the deformation behavior of nanolamellar Ti5Si3-TiNi composite [J]. Scr. Mater., 2014, 78-79: 53 | [24] | Zhang J S, Liu Y N, Huan Y, et al.High damping NiTi-Ti3Sn in situ composite with transformation-mediated plasticity[J]. Mater. Des., 2014, 63: 460 | [25] | Shao Y, Guo F M, Huan Y, et al.Fabrication, microstructure and mechanical properties of W-NiTi composites[J]. J Alloys Compd., 2017, 695: 1976 | [26] | Shao Y, Guo F M, Ren Y, et al.Tensile properties of a novel W-NiTi heavy alloy with transforming matrix[J]. Mater. Sci. Eng., 2017, A683: 103 | [27] | Shao Y, Yu K Y, Jiang D Q, et al.High strength W/TiNi micro-laminated composite with transformation-mediated ductility[J]. Mater. Des., 2016, 106: 415 | [28] | Du M S, Cui L S, Cao Y, et al.Mechanoelectrochemical catalysis of the effect of elastic strain on a platinum nanofilm for the ORR exerted by a shape memory alloy substrate[J]. J. Am. Chem. Soc., 2015, 137: 7397 | [29] | Feng C, Zhao J C, Yang F, et al.Nonvolatile modulation of electronic structure and correlative magnetism of L10-FePt films using significant strain induced by shape memory substrates[J]. Sci. Rep., 2016, 6: 20199 | [30] | Feng C, Zhao J C, Yang F, et al.Reversible and nonvolatile modulations of magnetization switching characteristic and domain configuration in L10-FePt films via nonelectrically controlled strain engineering[J]. ACS Appl. Mater. Interfaces, 2016, 8: 7545 | [31] | Du M S, Wan Q, Wang Z Q, et al.Elastic strain induced improvement in the photocatalytic activity of semiconducting film exerted by the surface relief of Fe-Ni-Co-Ti alloy substrate[J]. Mater. Lett., 2016, 168: 192 | [32] | Du M S, Cui L S, Wan Q.Tensile strain induced narrowed bandgap of TiO2 films: Utilizing the two-way shape memory effect of TiNiNb substrate and in-situ mechanical bending[J]. Mater. Sci. Eng., 2016, B207: 7 | [33] | Du M S, Wan Q, Wang Z Q, et al.Elastic strain effects on the photocatalytic TiO2 nanofilm: Utilizing the martensitic surface relief of FeNiCoTi alloy substrate[J]. Chem. Phys. Lett., 2016, 658: 130 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|