Please wait a minute...
金属学报  2018, Vol. 54 Issue (11): 1553-1566    DOI: 10.11900/0412.1961.2018.00372
  材料与工艺 本期目录 | 过刊浏览 |
高熵合金的变形行为及强韧化
吕昭平(), 雷智锋, 黄海龙, 刘少飞, 张凡, 段大波, 曹培培, 吴渊, 刘雄军, 王辉
北京科技大学新金属材料国家重点实验室 北京 100083
Deformation Behavior and Toughening of High-Entropy Alloys
Zhaoping LU(), Zhifeng LEI, Hailong HUANG, Shaofei LIU, Fan ZHANG, Dabo DUAN, Peipei CAO, Yuan WU, Xiongjun LIU, Hui WANG
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(3574 KB)   HTML
摘要: 

高熵合金是近年来涌现出的一种新型金属材料。不同于传统合金设计以1种或2种元素为主添加其它合金元素为辅的方案,高熵合金由多种元素以等原子比或近等原子比的成分组成,具有独特的原子结构特征,因而呈现出诸多不同于传统合金的独特性能。自高熵合金被首次报道以来,目前已经研发出了一系列的高熵合金体系,在物理、化学、热力学性能方面显示出独有的优势,尤其在力学行为方面显示出高强、高硬、耐磨、耐蚀、抗高温软化等优异的性能,在国际学术界引起了广泛的关注和研究兴趣,已经成为新的研究热点。本文从高熵合金变形机理研究存在的挑战出发,主要综述了高熵合金的力学性能和变形行为特点,已经提出的强韧化方案及相关机理,并对未来高熵合金变形行为的研究进行了简单展望。

关键词 高熵合金强韧化变形行为与机理    
Abstract

A new alloy design concept, high-entropy alloys (HEAs), has attracted increasing attentions and becomes a new research highlight recently. Different from traditional alloy design strategy which usually blends with one or two elements as the principal constituent and other minor elements for the further optimization of properties, HEAs are multicomponent alloys containing several principle elements (usually ≥5) in equiatomic or near equiatomic ratio. Due to their unique atomic structure, HEAs possess a lot of distinguished properties. Since the discovery of HEAs, a variety of HEA systems have been developed and shown unique physical, chemical and thermodynamic properties, especially the promising mechanical properties such as high strength and hardness, abrasion resistance, corrosion resistance and softening resistance. Here in this short review manuscript, starting from the research challenges for understanding the deformation mechanism of HEAs, this work briefly summarized the mechanical properties and deformation behavior of HEAs, reviewed the proposed strengthening-toughening strategies and their corresponding deformation mechanism in HEAs. A brief perspective on the research directions of mechanical behavior of HEAs was also proposed.

Key wordshigh-entropy alloy    toughening    deformation behavior and mechanism
收稿日期: 2018-08-16      出版日期: 2018-09-25
ZTFLH:  TG457.19  
基金资助:国家自然科学基金项目Nos.51671018、51871016、11790293、51531001 和 51671021,高等学校学科创新引智计划项目No.B07003,以及中央高校基本科研业务费项目Nos.FRF-TP-18-004C1 和 FRF-TP-15-004C1
作者简介: 作者简介 吕昭平,男,1970年生,教授

引用本文:

吕昭平, 雷智锋, 黄海龙, 刘少飞, 张凡, 段大波, 曹培培, 吴渊, 刘雄军, 王辉. 高熵合金的变形行为及强韧化[J]. 金属学报, 2018, 54(11): 1553-1566.
Zhaoping LU, Zhifeng LEI, Hailong HUANG, Shaofei LIU, Fan ZHANG, Dabo DUAN, Peipei CAO, Yuan WU, Xiongjun LIU, Hui WANG. Deformation Behavior and Toughening of High-Entropy Alloys. Acta Metall Sin, 2018, 54(11): 1553-1566.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2018.00372      或      http://www.ams.org.cn/CN/Y2018/V54/I11/1553

图1  不同Ta含量高熵合金的拉伸真应力-真应变曲线以及韧塑化高熵合金与其它合金材料的强度-塑性对比
图2  添加Ti和Al的FeCoNiCr高熵合金室温拉伸力学性能对比
图3  Ti和Al添加FeCoNiCr高熵合金中析出相形貌及结构表征
[1] Yeh J W, Chen S K, Lin S J, et al.Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 2004, 6: 299
[2] Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
[3] Miao J, Slone C E, Smith T M, et al.The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy[J]. Acta Mater., 2017, 132: 35
[4] Senkov O N, Wilks G B, Miracle D B, et al.Refractory high-entropy alloys[J]. Intermetallics, 2010, 18: 1758
[5] Daoud H M, Manzoni A M, V?lkl R, et al.Oxidation behavior of Al8Co17Cr17Cu8Fe17Ni33, Al23Co15Cr23Cu8Fe15Ni15, and Al17Co17Cr17Cu17-Fe17Ni17 compositionally complex alloys (high-entropy alloys) at elevated temperatures in air[J]. Adv. Eng. Mater., 2015, 17: 1134
[6] Senkov O N, Miller J D, Miracle D B, et al.Accelerated exploration of multi-principal element alloys with solid solution phases[J]. Nat. Commun., 2015, 6: 6529
[7] Gludovatz B, Hohenwarter A, Catoor D, et al.A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345: 1153
[8] Zhou Y J, Zhang Y, Wang Y L, et al.Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties[J]. Appl. Phys. Lett., 2007, 90: 181904
[9] Wang W R, Wang W L, Wang S C, et al.Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys[J]. Intermetallics, 2012, 26: 44
[10] Li Z M, Pradeep K G, Deng Y, et al.Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off[J]. Nature, 2016, 534: 227
[11] Huang H L, Wu Y, He J Y, et al.Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering[J]. Adv. Mater., 2017, 29: 1701678
[12] He J Y, Wang H, Huang H L, et al.A precipitation-hardened high-entropy alloy with outstanding tensile properties[J]. Acta Mater., 2016, 102: 187
[13] Gao X Z, Lu Y P, Zhang B, et al.Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Acta Mater., 2017, 141: 59
[14] Lucas M S, Wilks G B, Mauger L, et al.Absence of long-range chemical ordering in equimolar FeCoCrNi[J]. Appl. Phys. Lett., 2012, 100: 251907
[15] Yeh J W.Alloy design strategies and future trends in high-entropy alloys[J]. JOM, 2013, 65: 1759
[16] Yeh J W, Chang S Y, Hong Y D, et al.Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements[J]. Mater. Chem. Phys., 2007, 103: 41
[17] Courtney T H.Mechanical Behavior of Materials [M]. 2nd Ed., Long Grove, IL: Waveland Press, 2005: 186
[18] Fleischer R L.Rapid solution hardening, dislocation mobility, and the flow stress of crystals[J]. J. Appl. Phys., 1962, 33: 3504
[19] Labusch R.A statistical theory of solid solution hardening[J]. Phys. Status Solidi, 1970, 41B: 659
[20] Senkov O N, Scott J M, Senkova S V, et al.Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy[J]. J. Alloys Compd., 2011, 509: 6043
[21] Toda-Caraballo I, Rivera-Díaz-del-Castillo P E J. Modelling solid solution hardening in high entropy alloys[J]. Acta Mater., 2015, 85: 14
[22] Zhang Y, Zhou Y J, Lin J P, et al.Solid-solution phase formation rules for multi-component alloys[J]. Adv. Eng. Mater., 2008, 10: 534
[23] Zhang F X, Zhao S J, Jin K, et al.Local structure and short-range order in a NiCoCr solid solution alloy[J]. Phys. Rev. Lett., 2017, 118: 205501
[24] Santodonato L J, Zhang Y, Feygenson M, et al.Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy[J]. Nat. Commun., 2015, 6: 5964
[25] Singh P, Smirnov A V, Johnson D D.Atomic short-range order and incipient long-range order in high-entropy alloys[J]. Phys. Rev., 2015, 91B: 224204
[26] Li C, Xue Y F, Hua M T, et al.Microstructure and mechanical properties of AlxSi0.2CrFeCoNiCu1-x high-entropy alloys[J]. Mater. Des., 2016, 90: 601
[27] Wang F J, Zhang Y, Chen G L.Atomic packing efficiency and phase transition in a high entropy alloy[J]. J. Alloys Compd., 2009, 478: 321
[28] Tong Y, Velisa G, Zhao S, et al.Evolution of local lattice distortion under irradiation in medium-and high-entropy alloys[J]. Materialia, 2018, doi: 10.1016/j.mtla.2018.06.008
[29] He Q F, Yang Y.On lattice distortion in high entropy alloys[J]. Front. Mater., 2018, 5: 42
[30] Song H Q, Tian F Y, Hu Q M, et al.Local lattice distortion in high-entropy alloys[J]. Phys. Rev. Mater., 2017, 1: 023404
[31] Klepaczko J R.Physical-state variables—The key to constitutive modeling in dynamic plasticity[J]. Nucl. Eng. Des., 1991, 127: 103
[32] Neuh?user H, Schwink C.Materials Science and Technology, Solid Solution Strengthening[M]. Vol.6, Weinheim: VCH, 1993: 234
[33] Liu S Y, Wei Y J.The Gaussian distribution of lattice size and atomic level heterogeneity in high entropy alloys[J]. Ext. Mech. Lett., 2017, 11: 84
[34] Otto F, Dlouhy A, Somsen C, et al.The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J]. Acta Mater., 2013, 61: 5743
[35] Laplanche G, Kostka A, Horst O M, et al.Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy[J]. Acta Mater., 2016, 118: 152
[36] He J Y, Zhu C, Zhou D Q, et al.Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures[J]. Intermetallics, 2014, 55: 9
[37] He J Y, Liu W H, Wang H, et al.Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system[J]. Acta Mater., 2014, 62: 105
[38] Senkov O N, Semiatin S L.Microstructure and properties of a refractory high-entropy alloy after cold working[J]. J. Alloys Compd., 2015, 649: 1110
[39] Senkov O N, Scott J M, Senkova S V, et al.Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy[J]. J. Mater. Sci., 2012, 47: 4062
[40] Senkov O N, Wilks G B, Scott J M, et al.Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19: 698
[41] Takeuchi A, Amiya K, Wada T, et al.High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams[J]. JOM, 2014, 66: 1984
[42] Gao M C, Alman D E.Searching for next single-phase high-entropy alloy compositions[J]. Entropy, 2013, 15: 4504
[43] Feuerbacher M, Heidelmann M, Thomas C.Hexagonal high-entropy alloys[J]. Mater. Res. Lett., 2015, 3: 1
[44] Soler R, Evirgen A, Yao M, et al.Microstructural and mechanical characterization of an equiatomic YGdTbDyHo high entropy alloy with hexagonal close-packed structure[J]. Acta Mater., 2018, 156: 86
[45] Rogal ?, Czerwinski F, Jochym P T, et al.Microstructure and mechanical properties of the novel Hf25Sc25Ti25Zr25 equiatomic alloy with hexagonal solid solutions[J]. Mater. Des., 2016, 92: 8
[46] Wang W R, Wang W L, Yeh J W.Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures[J]. J. Alloys Compd., 2014, 589: 143
[47] Takeuchi A, Amiya K, Wada T, et al.Dual HCP structures formed in senary ScYLaTiZrHf multi-principal-element alloy[J]. Intermetallics, 2016, 69: 103
[48] Liu W H, Lu Z P, He J Y, et al.Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases[J]. Acta Mater., 2016, 116: 332
[49] Lin C M, Tsai H L.Effect of annealing treatment on microstructure and properties of high-entropy FeCoNiCrCu0.5 alloy[J]. Mater. Chem. Phys., 2011, 128: 50
[50] Liu W H, Wu Y, He J Y, et al.Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy[J]. Scr. Mater., 2013, 68: 526
[51] Lu Y P, Dong Y, Guo S, et al.A promising new class of high-temperature alloys: eutectic high-entropy alloys[J]. Sci. Rep., 2014, 4: 6200
[52] Lu Y P, Gao X Z, Jiang L, et al.Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range[J]. Acta Mater., 2017, 124: 143
[53] Jiang H, Han K M, Gao X X, et al.A new strategy to design eutectic high-entropy alloys using simple mixture method[J]. Mater. Des., 2018, 142: 101
[54] Wu D, Zhang J Y, Huang J C, et al.Grain-boundary strengthening in nanocrystalline chromium and the Hall-Petch coefficient of body-centered cubic metals[J]. Scr. Mater., 2013, 68: 118
[55] Sun S J, Tian Y Z, Lin H R, et al.Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement[J]. Mater. Sci. Eng., 2018, A712: 603
[56] Juan C C, Tsai M H, Tsai C W, et al.Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining[J]. Mater. Lett., 2016, 184: 200
[57] Seol J B, Bae J W, Li Z M, et al.Boron doped ultrastrong and ductile high-entropy alloys[J]. Acta Mater., 2018, 151: 366
[58] Fan X M, Xu L J.Review on strengthening mechanisms and models of metal materials[J]. Found. Technol., 2017, 38: 2796(范晓嫚, 徐流杰. 金属材料强化机理与模型综述[J]. 铸造技术, 2017, 38: 2796)
[59] Stepanov N D, Shaysultanov D G, Salishchev G A, et al.Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys[J]. J. Alloys Compd., 2015, 628: 170
[60] Liu S F, Wu Y, Wang H T, et al.Stacking fault energy of face-centered-cubic high entropy alloys[J]. Intermetallics, 2018, 93: 269
[61] Wu Z, Bei H, Pharr G M, et al.Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures[J]. Acta Mater., 2014, 81: 428
[62] Wang Z W, Baker I, Cai Z H, et al.The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys[J]. Acta Mater., 2016, 120: 228
[63] Stepanov N D, Shaysultanov D G, Chernichenko R S, et al.Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy[J]. J. Alloys Compd., 2017, 693: 394
[64] Xie Y C, Cheng H, Tang Q H, et al.Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering[J]. Intermetallics, 2018, 93: 228
[65] Chen Y W, Li Y K, Cheng X W, et al.Interstitial strengthening of refractory ZrTiHfNb0.5Ta0.5Ox (x= 0.05, 0.1, 0.2) high-entropy alloys[J]. Mater. Lett., 2018, 228: 145
[66] Jiang L, Lu Y P, Wu W, et al.Microstructure and mechanical properties of a CoFeNi2V0.5Nb0.75 eutectic high entropy alloy in as-cast and heat-treated conditions[J]. J. Mater. Sci. Technol., 2016, 32: 245
[67] He F, Wang Z J, Cheng P, et al.Designing eutectic high entropy alloys of CoCrFeNiNbx[J]. J. Alloys Compd., 2016, 656: 284
[68] Huang S, Li W, Lu S, et al.Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy[J]. Scr. Mater., 2015, 108: 44
[69] Deng Y, Tasan C C, Pradeep K G, et al.Design of a twinning-induced plasticity high entropy alloy[J]. Acta Mater., 2015, 94: 124
[70] Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures[J]. Nat. Commun., 2016, 7: 10602
[71] Laplanche G, Kostka A, Reinhart C, et al.Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi[J]. Acta Mater., 2017, 128: 292
[72] Okamoto N L, Fujimoto S, Kambara Y, et al.Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy[J]. Sci. Rep., 2016, 6: 35863
[73] Herrera C, Ponge D, Raabe D.Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability[J]. Acta Mater., 2011, 59: 4653
[74] Sun F, Zhang J Y, Marteleur M, et al.Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects[J]. Acta Mater., 2013, 61: 6406
[75] Wu Y, Xiao Y H, Chen G L, et al.Bulk metallic glass composites with transformation-mediated work-hardening and ductility[J]. Adv. Mater., 2010, 22: 2770
[76] Bouaziz O, Allain S, Scott C P, et al.High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships[J]. Curr. Opin. Solid State Mater. Sci., 2011, 15: 141
[77] Li Z M, K?rmann F, Grabowski B, et al.Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity[J]. Acta Mater., 2017, 136: 262
[78] Rogal ?, Kalita D, Tarasek A, et al.Effect of SiC nano-particles on microstructure and mechanical properties of the CoCrFeMnNi high entropy alloy[J]. J. Alloys Compd., 2017, 708: 344
[79] Rogal ?, Kalita D, Litynska-Dobrzynska L.CoCrFeMnNi high entropy alloy matrix nanocomposite with addition of Al2O3[J]. Intermetallics, 2017, 86: 104
[80] Zinkle S J, Ghoniem N M. Operating temperature windows for fusion reactor structural materials [J]. Fusion Eng. Des., 2000, 51-52: 55
[81] Hadraba H, Chlup Z, Dlouhy A, et al.Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy[J]. Mater. Sci. Eng., 2017, A689: 252
[82] Chen S T, Tang W Y, Kuo Y F, et al.Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys[J]. Mater. Sci. Eng., 2010, A527: 5818
[83] Tsai M H, Yuan H, Cheng G M, et al.Morphology, structure and composition of precipitates in Al0.3CoCrCu0.5FeNi high-entropy alloy[J]. Intermetallics, 2013, 32: 329
[84] Zhao Y L, Yang T, Zhu J H, et al.Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates[J]. Scr. Mater., 2018, 148: 51
[1] 魏琳,王志军,吴庆峰,尚旭亮,李俊杰,王锦程. Mo元素及热处理对Ni2CrFeMox高熵合金在NaCl溶液中耐蚀性能的影响[J]. 金属学报, 2019, 55(7): 840-848.
[2] 王晓军, 向烨阳, 胡小石, 吴昆. 碳纳米材料增强镁基复合材料研究进展[J]. 金属学报, 2019, 55(1): 73-86.
[3] 杨海欧, 尚旭亮, 王理林, 王志军, 王锦程, 林鑫. 单相CoCrFeNi高熵合金的组成元素对其在NaCl溶液中的耐蚀性能的影响[J]. 金属学报, 2018, 54(6): 905-910.
[4] 吴臣亮,张松,张春华,关锰,谭俊哲. 不锈钢表面FeCoCrAlCuNiMox激光高熵合金化层的相演变*[J]. 金属学报, 2016, 52(7): 797-803.
[5] 罗新民, 王翔, 陈康敏, 鲁金忠, 王兰, 张永康. 激光冲击诱导的航空铝合金表层高熵结构及其抗蚀性[J]. 金属学报, 2015, 51(1): 57-66.
[6] 张松, 吴臣亮, 王超, 伊俊振, 张春华. 铁单元素基合金表面激光高熵合金化涂层的制备*[J]. 金属学报, 2014, 50(5): 555-560.
[7] 张立东,王飞,陈顺礼,汪渊. AlCrTaTiNi/(AlCrTaTiNi)N双层扩散阻挡层的制备及热稳定性[J]. 金属学报, 2013, 49(12): 1611-1616.
[8] 张素芳,杨潇,张勇. Al3CrCuFeNi2高熵合金单晶材料的制备及性能[J]. 金属学报, 2013, 49(11): 1473-1480.
[9] 张晖 潘冶 何宜柱 . 激光熔覆FeCoNiCrAl2Si高熵合金涂层[J]. 金属学报, 2011, 47(8): 1075-1079.
[10] 翟秋亚 贾晨 康再祥 徐锦锋. 快速凝固Cu25Al10Ni25Fe20Co20高熵合金箔的微观结构及其电容储能焊特性[J]. 金属学报, 2011, 47(11): 1378-1381.
[11] 陈敏; 刘源; 李言祥; 陈祥 . 多主元高熵合金AlTiFeNiCuCrx微观结构和力学性能[J]. 金属学报, 2007, 43(10): 1020-1024 .
[12] 周义刚; 曾卫东; 李晓芹; 俞汉清; 曹春晓 . 钛合金高温形变强韧化机理[J]. 金属学报, 1999, 35(1): 45-48 .
[13] 刘静安. 3Cr2W8V钢强韧化处理研究[J]. 金属学报, 1996, 32(9): 985-992.