Please wait a minute...
金属学报  2017, Vol. 53 Issue (12): 1659-1668    DOI: 10.11900/0412.1961.2017.00185
  本期目录 | 过刊浏览 |
近共晶成分Ni-P非晶合金微结构特征的原子模拟分析
彭超, 李媛, 邓永和, 彭平()
湖南大学材料科学与工程学院 长沙 410082
Atomistic Simulation for Local Atomic Structures of Amorphous Ni-P Alloys with Near-Eutectic Compositions
Chao PENG, Yuan LI, Yonghe DENG, Ping PENG()
School of Materials Science & Engineering, Hunan Universuty, Changsha 410082, China
引用本文:

彭超, 李媛, 邓永和, 彭平. 近共晶成分Ni-P非晶合金微结构特征的原子模拟分析[J]. 金属学报, 2017, 53(12): 1659-1668.
Chao PENG, Yuan LI, Yonghe DENG, Ping PENG. Atomistic Simulation for Local Atomic Structures of Amorphous Ni-P Alloys with Near-Eutectic Compositions[J]. Acta Metall Sin, 2017, 53(12): 1659-1668.

全文: PDF(1630 KB)   HTML
  
摘要: 

采用分子动力学方法模拟了Ni100-xPx (x=19.0、19.4、19.6、19.8、20.0、21.0)合金在冷速为5×1012 K/s下的快速凝固过程,并采用Voronoi多面体指数〈n3,n4,n5,n6〉和团簇类型指数(Zni/(ijkl)i...)对其局域原子结构进行了表征。结果发现,Ni原子的团簇属性主要是高配位(Z≥12)的Frank-Kasper团簇及其变形结构,典型的化学短程序为NiZ-2P3,基本团簇间可通过交叉共享(IS)联结形成中程序结构;而P原子的局域结构除了Z=10的BSAP多面体外,还存在大量高配位(特别是Z=12)的Frank-Kasper结构形态,典型的化学短程序为Ni12P;并且,P芯基本团簇的壳层原子全部为Ni,其间只能通过顶点共享(VS)、边共享(ES)和面共享(FS)联结形成扩展团簇。BSAP多面体及其相关结构被证实对Ni100-xPx非晶合金的形成具有重要影响,其数量在共晶点x=19.6时最多,偏离共晶点越远,所占比例越小,其结果与不同浓度下Ni100-xPx合金非晶形成能力的变化趋势一致。这可能就是Ni-P合金在共晶点具有最强非晶形成能力的原因。

关键词 Ni-P非晶合金分子动力学BSAP结构非晶形成能力    
Abstract

Ni100-xPx alloys with near-eutectic compositions have a strong glass forming ability (GFA), but the microstructure prototypes and their evolution in various solidification processes are still unclear now. To reveal their unique structures, a series of molecular dynamics simulations for the rapid solidification process of liquid Ni100-xPx (x=19.0, 19.4, 19.6, 19.8, 20.0, 21.0) alloys were performed at a cooling rate of 5×1012 K/s, and their local atomic configurations at 300 K were characterized by Voronoi polyhedron index 〈n3,n4,n5,n6〉and cluster type index (Zni/(ijkl)i...). The results show that the local atomic structures of Ni atoms are mainly Frank-Kasper clusters with high coordination (Z≥12) as well as their distorted configurations. Their chemical short-range orders are mostly NiZ-2P3, and these basic clusters can be further aggregated into medium-range orders (MROs) by intercross-sharing (IS) linkages. The majority of P-centered clusters are bi-capped square Archimedean anti-prism (BSAP) polyhedrons, but lots of Frank-Kasper clusters with higher coordination exist in the amorphous Ni100-xPx alloys. Their typical chemical short-range orders are Ni12P. In these short range orders (SROs) centered by P, all shell atoms are found to be Ni atoms, and no MRO can be detected except for their extended clusters linked by vertex-sharing (VS), edge-sharing (ES) and face-sharing (FS). The BSAP polyhedrons and their correlative structures play a crucial role in the formation of amorphous Ni100-xPx alloy. Their quantity is demonstrated to have a significant impact on the glass transformation of rapidly solidified Ni100-xPx alloys. It is found that the number of BSAP polyhedrons and their deformed structures at eutectic composition point x=19.6 is the largest among Ni100-xPx alloys, and the farther x deviates from the eutectic composition point, the smaller the proportion of BSAP polyhedrons and their structures more related to all P-centered clusters, which are consistent with the variation tendency of GFAs of Ni100-xPx alloys. Maybe, it could be responsible for the existence of the strongest GFAs at the eutectic composition point of Ni100-xPx alloys.

Key wordsamorphous Ni-P alloy    molecular dynamics    BSAP cluster    glass forming ability
收稿日期: 2017-05-14     
ZTFLH:  TG139  
基金资助:国家自然科学基金项目Nos.51071065和51428101
作者简介:

作者简介 彭 超,男,1990年生,硕士生

图1  Ni100-xPx合金在300 K时的双体分布函数g(r)
Voronoi index Number Voronoi index Number
Ni-centered P-centered Total Ni-centered P-centered Total
<0, 3, 6, 0> 0 355 355 <0, 1, 10, 2> 1089 3 1092
<0, 4, 4, 1> 0 63 63 <0, 3, 6, 4> 917 1 918
<0, 2, 8, 0> 18 373 391 <0, 2, 8, 3> 383 0 383
<0, 3, 6, 1> 26 349 375 <0, 3, 6, 5> 143 0 143
<0, 4, 4, 2> 9 118 127 <0, 4, 4, 5> 132 0 132
<0, 2, 8, 1> 361 261 622 <0, 3, 8, 2> 48 0 48
<0, 3, 6, 2> 146 64 210 <0, 2, 10, 1> 46 0 46
<0, 4, 4, 3> 118 63 181 <0, 4, 6, 3> 45 0 45
<0, 4, 6, 1> 26 10 36 <1, 2, 5, 4> 40 0 40
<0, 0, 12, 0> 640 48 688 <0, 3, 7, 3> 39 0 39
<0, 2, 8, 2> 1112 30 1142 <0, 5, 2, 6> 34 0 34
<0, 3, 6, 3> 719 12 731 <0, 2, 8, 4> 359 0 359
<0, 4, 4, 4> 267 4 271 <0, 0, 12, 2> 117 0 117
<0, 4, 6, 2> 71 2 73 <1, 0, 9, 3> 36 0 36
<0, 3, 7, 2> 48 0 48 <0, 1, 10, 3> 270 0 270
<0, 2, 10, 0> 33 1 34 <0, 4, 4, 6> 38 0 38
<0, 3, 8, 1> 31 2 33 <0, 4, 5, 4> 38 0 38
<1, 2, 6, 3> 31 0 31 <0, 5, 2, 5> 35 1 36
<0, 4, 5, 3> 27 0 27 <0, 1, 10, 4> 60 0 60
Sum: 7552 Ni-centered+P-centered 1760=9312
表1  300 K时Ni80.4P19.6非晶合金Voronoi多面体的种类与数量
图2  Ni100-xPx非晶合金中典型Voronoi多面体结构示意图
CTIM cluster Number
Ni-centered P-centered Total
(10 2/1441 8/1551) 0 42 42
(10 1/1441 5/1551 1/1541 3/1431) 0 40 40
(11 2/1441 8/1551 1/1661) 1 100 101
(11 1/1441 6/1551 2/1541 2/1431) 4 61 65
(11 2/1441 4/1551 1/1661 2/1541 2/1431) 0 39 39
(12 2/1441 8/1551 2/1661) 40 164 204
(12 8/1551 2/1541 2/1431) 100 52 152
(12 12/1551) 92 41 133
(12 2/1441 4/1551 2/1661 2/1541 2/1431) 28 57 85
(12 3/1441 6/1551 3/1661) 8 56 64
(12 2/1441 5/1551 1/1661 3/1541 1/1431) 20 34 54
(12 1/1441 6/1551 1/1661 2/1541 2/1431) 14 25 39
(12 2/1441 4/1551 2/1661 3/1541 1/1321) 2 36 38
(12 4/1441 4/1551 4/1661) 1 32 33
(12 7/1551 2/1541 2/14321 1/1311) 24 6 30
(13 1/1441 10/1551 2/1661) 284 31 315
(13 3/1441 6/1551 4/1661) 149 74 223
(13 1/1441 6/1551 2/1661 2/1541 2/1431) 129 24 153
(13 2/1441 4/1551 3/1661 2/1541 2/1431) 83 35 118
(13 1/1441 7/1551 1/1661 3/1541 1/1431) 107 4 111
(13 8/1551 1/1661 2/1541 2/1431) 101 5 106
(13 2/1441 8/1551 3/1661) 68 29 97
(13 3/1441 3/1551 3/1661 3/1541 1/1431) 55 29 84
(13 2/1441 5/1551 2/1661 3/1541 1/1431) 51 22 73
(13 8/1551 1/1661 3/1541 1/1321) 47 4 51
(13 4/1441 4/1551 5/1661) 16 26 42
(13 1/1441 5/1551 2/1661 2/1541 2/1431 1/1321) 36 3 39
(14 2/1441 8/1551 4/1661) 316 5 321
(14 3/1441 6/1551 5/1661) 165 25 190
(14 1/1441 10/1551 3/1661) 175 3 178
(14 1/1441 7/1551 2/1661 3/1541 1/1431) 155 0 155
(14 2/1441 5/1551 3/1661 3/1541 1/1431) 119 1 120
(14 4/1441 4/1551 6/1661) 88 25 113
(14 1/1441 6/1551 3/1661 2/1541 2/1431) 81 1 82
(14 9/1551 1/1661 3/1541 1/1431) 82 0 82
(14 2/1441 4/1551 4/1661 2/1541 2/1431) 77 2 79
(14 3/1441 3/1551 4/1661 3/1541 1/1431) 58 4 62
(14 12/1551 2/1661) 54 0 54
(14 8/1551 2/1661 2/1541 2/1431) 49 0 49
(15 2/1441 8/1551 5/1661) 168 0 168
(15 1/1441 10/1551 4/1661) 135 1 136
(15 3/1441 6/1551 6/1661) 94 2 96
(15 1/1441 7/1551 3/1661 3/1541 1/1431) 84 0 84
(15 2/1441 5/1551 4/1661 3/1541 1/1431) 47 0 47
(15 4/1441 4/1551 7/1661) 45 1 46
(15 9/1551 2/1661 3/1541 1/1431) 37 0 37
(16 2/1441 8/1551 6/1661) 38 0 38
(16 1/1441 10/1551 5/1661) 34 0 34
Sum 3561 1141 4702
表2  300 K时Ni80.4P19.6非晶合金CTIM团簇的主要种类与数量
CTIM cluster Number NiZ+1-xPx
x=0 x=1 x=2 x=3 x=4
(14 2/1441 8/1551 4/1661) 316 0 0 91 186 39
(13 1/1441 10/1551 2/1661) 284 0 10 141 127 6
(14 1/1441 10/1551 3/1661) 175 0 1 47 112 15
(15 2/1441 8/1661 5/1661) 168 0 2 33 87 46
(14 3/1441 6/1551 5/1661) 165 0 1 29 105 30
(14 1/1441 7/1551 2/1661 3/1541 1/431) 155 0 7 63 72 13
(13 3/1441 6/1551 4/1661) 149 0 11 60 72 6
(15 1/1441 10/1551 4/1661) 135 0 0 21 74 40
(13 1/1441 6/1551 2/1661 2/1541 2/1431) 129 0 4 56 62 7
(14 2/1441 5/1551 3/1661 3/1541 1/1431) 119 0 2 20 83 14
(13 1/1441 7/1551 1/1661 3/1541 1/1431) 107 0 0 48 59 0
(13 8/1551 1/1661 2/1541 2/1431) 101 0 8 29 61 3
(12 8/1551 2/1541 2/1431) 100 0 6 72 22 0
表3  300 K时Ni80.4P19.6非晶合金中Ni芯典型CTIM团簇的化学序
Core Total (13 3/1441 6/1551 4/1661) Core Total (12 2/1441 8/1551 2/1661)
Isolated VS ES FS IS Isolated VS ES FS IS
Ni 149 78 11 5 13 7 Ni 40 22 3 1 2 1
P 74 37 3 3 5 0 P 164 87 18 6 12 0
Ni & P 223 0 13 6 5 18 Ni & P 204 0 2 6 4 4
表4  300 K时Ni80.4P19.6非晶合金中(13 3/1441 6/1551 4/1661)与(12 2/1441 8/1551 2/1661)团簇的联结
图3  2个(13 3/1441 6/1551 4/1661)基本团簇之间IS联结示意图
Voronoi index Ni100-xPx
x=19.0 x=19.4 x=19.6 x=19.8 x=20.0 x=21.0
<0, 0, 12, 0> 2.79 2.22 2.45 2.17 2.95 3.05
<0, 2, 8, 0> 17.26 18.56 19.03 18.79 18.60 15.33
<0, 2, 8, 1> 15.58 14.90 13.32 12.53 16.65 14.43
<0, 3, 6, 0> 13.84 13.51 18.11 17.83 12.95 14.57
<0, 3, 6, 1> 17.11 17.42 17.81 17.32 17.10 15.67
<0, 3, 6, 2> 4.11 2.73 3.27 2.37 4.45 4.38
<0, 4, 4, 1> 2.00 1.80 3.21 2.63 2.00 2.86
<0, 4, 4, 2> 4.95 4.59 6.02 5.61 4.95 5.67
<0, 4, 4, 3> 4.89 4.28 3.21 3.54 5.05 4.90
Sum 82.53 80.01 86.43 82.79 84.70 80.86
表5  快凝Ni100-xPx合金在300 K时以溶质原子P为中心的典型Voronoi多面体分布
图4  Ni100-xPx非晶合金中P芯BSAP多面体<0, 2, 8, 0>及其变形结构<0, 3, 6, 1>的分数随x的变化
Cluster type Ni100-xPx
x=19.0 x=19.4 x=19.6 x=19.8 x=20.0 x=21.0
(10 4/1551 2/1422 4/1431) 19 20 24 21 21 22
(10 1/1441 2/1551 1/1421 2/1541 4/1431) 27 27 22 21 25 24
(10 1/1441 5/1551 1/1541 3/1431) 29 37 40 35 36 45
(10 2/1441 8/1551) 24 26 42 38 32 23
(11 1/1441 5/1551 1/1661 2/1541 1/1431 1/1321) 33 27 23 20 29 35
(11 1/1441 6/1551 2/1541 2/1431) 65 58 61 66 78 58
(11 2/1441 4/1551 1/1661 2/1541 2/1431) 26 32 39 38 28 37
(11 2/1441 8/1551 1/1661) 79 89 100 93 90 92
(11 4/1441 4/1551 3/1661) 20 26 23 25 29 32
(12 8/1551 2/1541 2/1431) 33 33 52 50 49 45
(12 12/1551) 35 20 41 27 32 21
(12 1/1441 6/1551 1/1661 2/1541 2/1431) 29 25 25 21 21 22
(12 2/1441 4/1551 2/1661 2/1541 2/1431) 47 72 57 61 64 54
(12 2/1441 4/1551 2/1661 3/1541 1/1321) 35 22 36 28 32 29
(12 2/1441 5/1551 1/1661 3/1541 1/1431) 35 38 34 31 44 27
(12 2/1441 8/1551 2/1661) 112 123 164 143 138 126
(12 3/1441 2/1551 3/1661 2/1541 2/1431) 19 22 23 20 23 24
(12 3/1441 6/1551 3/1661) 52 48 56 53 55 49
(12 4/1441 4/1551 4/1661) 25 20 32 21 23 25
(13 1/1441 6/1551 2/1661 2/1541 2/1431) 26 24 24 28 21 22
(13 1/1441 10/1551 2/1661) 23 27 31 28 20 25
(13 2/1441 4/1551 3/1661 2/1541 2/1431) 21 21 35 22 20 23
(13 2/1441 5/1551 2/1661 3/1541 1/1431) 21 20 22 25 27 24
(13 2/1441 8/1551 3/1661) 20 21 29 24 20 23
(13 3/1441 3/1551 3/1661 3/1541 1/1431) 22 26 29 27 26 29
(13 3/1441 6/1551 4/1661) 73 73 74 82 71 58
(13 4/1441 4/1551 5/1661) 19 23 26 20 21 23
(14 3/1441 6/1551 5/1661) 21 24 25 26 22 21
(14 4/1441 4/1551 6/1661) 22 26 25 24 24 25
Sum 1012 1050 1214 1118 1121 1063
Sum/x×10000% 53.26 54.12 61.94 56.46 56.05 50.62
表6  300 K时Ni100-xPx非晶合金中以溶质原子P为中心的主要CTIM团簇种类及数目
图5  BSAP相关团簇占比及临界厚度(Dc)在Ni100-xPx体系中的变化曲线
图6  (11 1/1441 6/1551 2/1541 2/1431) CTIM团簇与<0, 2, 8, 0> Voronoi多面体对应关系示意图
[1] Brenner A, Riddell G.Deposition of nickel and cobalt by chemical reduction[J]. J. Res. Nat. Bur. Stand., 1947, 39: 385
[2] Sui M L, Lu K.Microstructures of crystallites in nanocrystalline Ni-P alloys[J]. Acta Metall. Sin., 1994, 30: 413(隋曼龄, 卢柯. 纳米晶体Ni-P合金晶粒微观结构的研究[J]. 金属学报, 1994, 30: 413)
[3] Sui M L.An investigation on the recovery behaviors of the lattice distortions in an Ni3P/Ni nanophase material[J] Acta Metall. Sin., 1998, 34: 650(隋曼龄. Ni3P/Ni复相纳米材料晶格畸变的热回复行为研究[J]. 金属学报, 1998, 34: 650)
[4] Budurov S, Fotty V, Toncheva S, et al.The glass-forming ability in the ternary Ni-Co-P and Ni-Cu-P systems[J]. Mater. Sci. Eng., 1991, A133: 455
[5] Paseka I.Hydrogen evolution reaction on Ni-P alloys: The internal stress and the activities of electrodes[J]. Electrochim. Acta, 2008, 53: 4537
[6] Hameed R M A, Fekry A M. Electrochemical impedance studies of modified Ni-P and Ni-Cu-P deposits in alkaline medium[J]. Electrochim. Acta, 2010, 55: 5922
[7] Nash P.Phase Diagrams of Binary Nickel Alloys[M]. Ohio: ASM International, 1991: 2833
[8] Schmetterer C, Vizdal J, Ipser H.A new investigation of the system Ni-P[J]. Intermetallics, 2009, 17: 826
[9] Huang Q S, Liu L, Li J F, et al.Redetermination of the eutectic composition of the Ni-P binary alloy[J]. J. Phase Equilib. Diff., 2010, 31: 532
[10] Huang Q S, Lu B F, Kong L T, et al.On the glass-forming ability of Ni-P binary alloys[J]. Mater. Res. Bull., 2012, 47: 1973
[11] Kraus L, Ha?lar V, Duhaj P, et al. The structure and magnetic properties of nanocrystalline Co21Fe64-xNbxB15 alloys [J]. Mater. Sci. Eng., 1997, A226-228: 626
[12] Cheng Y Q, Ma E.Atomic-level structure-property relationship in metallic glasses[J]. Prog. Mater. Sci., 2011, 56: 379
[13] Ding J, Cheng Y Q, Sheng H W, et al.Short-range structural signature of excess specific heat and fragility of metallic glass-forming supercooled liquids[J]. Phys. Rev., 2012, 85B: 060201
[14] Laws K J, Miracle D B, Ferry M.A predictive structural model for bulk metallic glasses[J]. Nat. Commun., 2015, 6: 8123
[15] Bennett M R, Wright J G.Amorphous films of the transition elements[J]. Phys. Stat. Sol., 1972, 13: 135
[16] Lu K, Wang J T.A micromechanism for crystallization of amorphous alloys I. An in situ TEM observation[J]. J. Cryst. Growth, 1991, 112: 525
[17] Lu K, Sui M L, Wang J T.A micromechanism for crystallization of amorphous alloys II. Bulk crystallization process[J]. J. Cryst. Growth, 1991, 113: 242
[18] Luo W K, Ma E.EXAFS measurements and reverse Monte Carlo modeling of atomic structure in amorphous Ni80P20 alloys[J]. J. Non-Cryst. Solids, 2008, 354: 945
[19] Plimpton S.Fast parallel algorithms for short-range molecular dynamics[J]. J. Comput. Phys., 1995, 117: 1
[20] Mendelev M I, Sordelet D J, Kramer M J.Using atomistic computer simulations to analyze X-ray diffraction data from metallic glasses[J]. J. Appl. Phys., 2007, 102: 043501
[21] Martyna G J, Tobias D J, Klein M L.Constant pressure molecular dynamics algorithms[J]. J. Chem. Phys., 1994, 101: 4177
[22] Verlet L.Computer experiments on classical fluids: I. Thermodynamical properties of lennard-jones molecules[J]. Phys. Rev., 1967, 159: 98
[23] Finney J L.Random packings and the structure of simple liquids. II. The molecular geometry of simple liquids[J]. Proc. R. Soc. Lond., 1970, 319A: 495
[24] Wei Y D, Peng P, Yan Z Z, et al.A comparative study on local atomic configurations characterized by cluster-type-index method and Voronoi polyhedron method[J]. Comput. Mater. Sci., 2016, 123: 214
[25] Mo Y F, Liu R S, Liang Y C, et al.Molecular dynamics simulation on the evolution of microstructures of liquid ZnxAl100-x alloys during rapid solidification[J]. Acta Metall. Sin., 2012, 48: 907(莫云飞, 刘让苏, 梁永超等. ZnxAl100-x合金快凝过程中微结构演变特性的分子动力学模拟[J]. 金属学报, 2012, 48: 907)
[26] Wigner E, Seitz F.On the constitution of metallic sodium[J]. Phys. Rev., 1933, 43: 804
[27] Lamparter P.Reverse monte carlo simulation of amorphous Ni80P20 and Ni81B19 [J]. Phys. Scr., 1995, 57: 72
[28] Swope W C, Andersen H C.106-particle molecular-dynamics study of homogeneous nucleation of crystals in a supercooled atomic liquid[J]. Phys. Rev., 1990, 41B: 7042
[29] Brostow W, Chybicki M, Laskowski R, et al.Voronoi polyhedra and Delaunay simplexes in the structural analysis of molecular-dynamics-simulated materials[J]. Phys. Rev., 1998, 57B: 13448
[30] Yu D Q, Chen M, Han X J.Structure analysis methods for crystalline solids and supercooled liquids[J]. Phys. Rev., 2005, 72E: 051202
[31] Gao W, Feng S D, Qi L, et al.Local five-fold symmetry and diffusion behavior of Zr64Cu36 amorphous alloy based on molecular dynamics[J]. Chin. Phys. Lett., 2015, 32: 116101
[32] Honeycutt J D, Andersen H C.Molecular dynamics study of melting and freezing of small Lennard-Jones clusters[J]. J. Phys. Chem., 1987, 91: 4950
[33] Deng Y H, Wen D D, Peng C, et al.Heredity of icosahedrons: A kinetic parameter related to glass-forming abilities of rapidly solidified Cu56Zr44 alloys[J]. Acta Phys. Sin., 2016, 65: 066401(邓永和, 文大东, 彭超等. 二十面体团簇的遗传: 一个与快凝Cu56Zr44合金玻璃形成能力有关的动力学参数[J]. 物理学报, 2016, 65: 066401)
[34] Wen D D, Peng P, Jiang Y Q, et al.The effect of cooling rates on hereditary characteristics of icosahedral clusters in rapid solidification of liquid Cu56Zr44 alloys[J]. J. Non-Cryst. Solids, 2014, 388: 75
[35] Hou Z Y, Liu L X, Liu R S, et al.Short-range and medium-range order in Ca7Mg3 metallic glass[J]. J. Appl. Phys., 2010, 107: 083511
[36] Wen D D, Peng P, Jiang Y Q, et al.A track study on icosahedral clusters inherited from liquid in the process of rapid solidification of Cu64Zr36 alloy[J]. Acta Phys. Sin., 2013, 62: 196101(文大东, 彭平, 蒋元祺等. 快凝过程中液态Cu64Zr36合金二十面体团簇遗传与演化跟踪[J]. 物理学报, 2013, 62: 196101)
[37] Sheng H W, Luo W K, Alamgir F M, et al.Atomic packing and short-to-medium-range order in metallic glasses[J]. Nature, 2006, 439: 419
[1] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[2] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[3] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[4] 黄火根, 张鹏国, 张培, 王勤国. U-CoU-Fe基础体系非晶形成能力的比较[J]. 金属学报, 2020, 56(6): 849-854.
[5] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[6] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[7] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[8] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[9] 马小强,杨坤杰,徐喻琼,杜晓超,周建军,肖仁政. 金属Nb级联碰撞的分子动力学模拟[J]. 金属学报, 2020, 56(2): 249-256.
[10] 史俊勤,孙琨,方亮,许少锋. 含水条件下单晶Cu的应力松弛及弹性恢复[J]. 金属学报, 2019, 55(8): 1034-1040.
[11] 张清东,李硕,张勃洋,谢璐,李瑞. 金属轧制复合过程微观变形行为的分子动力学建模及研究[J]. 金属学报, 2019, 55(7): 919-927.
[12] 王瑾, 余黎明, 李冲, 黄远, 李会军, 刘永长. 不同温度对含与不含位错α-Fe中He原子行为的影响[J]. 金属学报, 2019, 55(2): 274-280.
[13] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.
[14] 张海峰, 闫海乐, 贾楠, 金剑锋, 赵骧. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究[J]. 金属学报, 2018, 54(9): 1333-1342.
[15] 赵鹏越, 郭永博, 白清顺, 张飞虎. 基于微观结构的多晶Cu纳米压痕表面缺陷研究[J]. 金属学报, 2018, 54(7): 1051-1058.