Please wait a minute...
金属学报  2017, Vol. 53 Issue (12): 1651-1658    DOI: 10.11900/0412.1961.2017.00025
  本期目录 | 过刊浏览 |
铝合金薄板高转速搅拌摩擦焊接头组织与力学性能
刘奋军1,2, 傅莉1,3,4(), 陈海燕1,3,4
1 西北工业大学材料学院 西安 710072
2 榆林学院能源工程学院 榆林 719000
3 西北工业大学凝固技术国家重点实验室 西安 710072
4 西北工业大学陕西省摩擦焊接工程技术重点实验室 西安 710072
Microstructures and Mechanical Properties of Thin Plate Aluminium Alloy Joint Prepared by High Rotational Speed Friction Stir Welding
Fenjun LIU1,2, Li FU1,3,4(), Haiyan CHEN1,3,4
1 School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
2 College of Energy Engineering, Yulin University, Yulin 719000, China
3 State Key Laboratory of Solidification, Northwestern Polytechnical University, Xi'an 710072, China
4 Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

刘奋军, 傅莉, 陈海燕. 铝合金薄板高转速搅拌摩擦焊接头组织与力学性能[J]. 金属学报, 2017, 53(12): 1651-1658.
Fenjun LIU, Li FU, Haiyan CHEN. Microstructures and Mechanical Properties of Thin Plate Aluminium Alloy Joint Prepared by High Rotational Speed Friction Stir Welding[J]. Acta Metall Sin, 2017, 53(12): 1651-1658.

全文: PDF(9228 KB)   HTML
摘要: 

采用高转速微型搅拌摩擦焊接工艺实现了0.8 mm厚6061-T6铝合金薄板对接。利用OM、SEM、TEM及EBSD等测试技术探讨了高转速对接头微观组织及力学性能的影响规律。结果表明,高转速焊接6061-T6薄板时,焊缝表面成型良好,焊缝各区域组织呈连续均匀过渡。与常规搅拌摩擦焊相比,高转速工艺下,焊缝区β-Mg2Si、S相(Al2CuMg)和Al8Fe2Si析出相数量增多,特别是长条状β-Mg2Si数量增多,焊缝区显微硬度值明显提升;转速8000 r/min、焊速1500 mm/min条件下,接头最大抗拉强度高达301.8 MPa,是母材抗拉强度(351.7 MPa)的85.8%;转速对6061-T6铝合金超薄板高转速搅拌摩擦焊对接接头抗拉强度影响较小,接头断裂模式为脆性断裂为主的韧-脆混合断裂。

关键词 6061-T6铝合金薄板高转速FSW组织抗拉强度    
Abstract

Aluminium alloys were widely applied in rail transit, ships and aerospace owing to their unique properties, such as low density, high strength and stiffness, outstanding corrosion resistance and low temperature performance. As a type of structure material, aluminium alloy joining was inevitable. However, these alloys were often considered very difficult to weld using traditional fusion welding technique since the welding seams were often accompanied with metallurgical defects, large deformation and stress. Friction stir welding (FSW), an innovative solid-state welding technology invented at the welding institute (TWI), was seen by designers as an effective joining methods in welding aluminium alloys due to low heat input, small stress-strain and environment friendly. In this work, 0.8 mm thick plate of 6061-T6 aluminium alloy was successfully welded by use of high rotational speed fiction stir welding technology. The microstructure and mechanical property of the butt joints prepared by high rotational speed friction stir welding were analysed in detail. The results show that the well surface topography and excellent bonding interface existed in the nugget zone (NZ) were observed. Both of the microhardness of the weld seam was lower than that of the substrate. The lowest microhardness of the butt joints located between the thermo-mechanically affected zone (TMAZ) and heat affected zone (HAZ). Compared with the conventional rotational speed, the number of β-Mg2Si, Al2CuMg and Al8Fe2Si precipitated phases existed in the NZ was more, which made the microhardness in the NZ improved significantly. The rod-shaped precipitates (Mg2Si) have the greatest influence on the microhardness. The excellent mechanical properties were obtained at the rotational speed of 8000 r/min and welding speed of 1500 mm/min. The maximum tensile strength was 301.8 MPa, which was 85.8% of the as-received 6061-T6 (351.7 MPa). And the toughness-brittleness fracture mode appeared.

Key wordsthin plate 6061-T6 aluminium alloy    high rotational speed    friction stir welding (FSW)    microstructure    tensile property
收稿日期: 2017-01-19     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目No.51575450,陕西省重点科技创新团队计划项目No.2014KCT-12,陕西省自然科学基础研究计划项目No.S2016YFJZ0164,凝固技术国家重点实验室自主研究课题项目No.127-QP-2015
作者简介:

作者简介 刘奋军,男,1982年生,博士生

图1  6061-T6铝合金薄板搅拌摩擦焊(FSW)示意图及拉伸试样取样图
图2  不同转速下6061-T6铝合金薄板FSW焊缝表面成型宏观形貌
图3  不同转速下6061-T6铝合金薄板FSW接头宏观形貌
图4  不同转速下6061-T6铝合金FSW接头微观组织
图5  不同转速下6061-T6铝合金FSW接头析出相形貌及分布明场像
图6  转速8000 r/min下6061-T6铝合金FSW接头不同区域(图3b)晶粒分布特征
图7  图6中6061-T6铝合金FSW接头不同位置处晶粒分布
图8  不同转速下6061-T6铝合金FSW接头显微硬度分布
图9  转速8000 r/min下6061-T6铝合金薄板FSW接头焊核区晶界分布
ω / (rmin-1) v / (mmmin-1) σUTS / MPa σYS / MPa δ / %
0 0 351.7 296.8 21.50
2000 300 239.0 179.2 4.80
7000 1500 289.4 207.8 4.88
8000 1500 301.8 216.6 5.39
9000 1500 300.8 213.0 5.44
10000 1500 292.6 205.7 5.31
11000 1500 292.2 201.8 5.49
表1  6061-T6母材及不同转速下FSW对接接头拉伸性能
图10  转速8000 r/min下6061-T6铝合金FSW接头拉伸断口形貌
[1] Rhodes C G, Mahoney M W, Bingel W H, et al.Effects of friction stir welding on microstructure of 7075 aluminum[J]. Scr. Mater., 1997, 36: 69
[2] Da Silvada A A M, Arruti E, Janeiro G, et al. Material flow and mechanical behaviour of dissimilar AA2024-T3 and AA7075-T6 aluminium alloys friction stir welds[J]. Mater. Des., 2011, 32: 2021
[3] Mishra R S, Ma Z Y.Friction stir welding and processing[J]. Mater. Sci. Eng., 2005, R50: 1
[4] Threadgill P L, Leonard A J, Shercliff H R, et al.Friction stir welding of aluminium alloys[J]. Int. Mater. Rev., 2009, 54: 49
[5] Nandan R, DebRoy T, Bhadeshia H K D H. Recent advances in friction stir welding—Process, weldment structure and properties[J]. Prog. Mater. Sci., 2008, 53: 980
[6] Wang T, Zou Y, Matsuda K.Micro-structure and micro-textural studies of friction stir welded AA6061-T6 subjected to different rotation speeds[J]. Mater. Des., 2016, 90: 13
[7] Liu F C, Ma Z Y.Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction stir welded 6061-T651 aluminum alloy[J]. Metall. Mater. Trans., 2008, 39A: 2378
[8] Guo J F, Chen H C, Sun C N, et al.Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters[J]. Mater. Des., 2014, 56: 185
[9] Liu H J, Hou J C, Guo H.Effect of welding speed on microstructure and mechanical properties of self-reacting friction stir welded 6061-T6 aluminum alloy[J]. Mater. Des., 2013, 50: 872
[10] He C, Liu Y J, Dong J F, et al.Through thickness property variations in friction stir welded AA6061 joint fatigued in very high cycle fatigue regime[J]. Int. J. Fatigue, 2016, 82: 379
[11] Rodrigues D M, Loureiro A, Leitao C, et al.Influence of friction stir welding parameters on the microstructural and mechanical properties of AA 6016-T4 thin welds[J]. Mater. Des., 2009, 30: 1913
[12] Galvao I, Leitao C, Loureiro A, et al.Friction stir welding of very thin plates[J]. Soldag. Insp. Sao. Paulo., 2012, 17: 2
[13] Leal R M, Leit?o C, Loureiro A, et al.Material flow in heterogeneous friction stir welding of thin aluminium sheets: Effect of shoulder geometry[J]. Mater. Sci. Eng., 2008, A498: 384
[14] Scialpi A, De Filippis L A C, Cavaliere P. Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy[J]. Mater. Des., 2007, 28: 1124
[15] De Giorgi M, Scialpi A, Panella F W, et al.Effect of shoulder geometry on residual stress and fatigue properties of AA6082 FSW joints[J]. J. Mech. Sci. Technol., 2009, 23: 26
[16] Scialpi A, De Giorgi M, De Filippis L A C, et al. Mechanical analysis of ultra-thin friction stir welding joined sheets with dissimilar and similar materials[J]. Mater. Des., 2008, 29: 928
[17] Murr L E, Liu G, McClure J C. A TEM study of precipitation and related microstructures in friction-stir-welded 6061 aluminium[J]. J. Mater. Sci., 1998, 33: 1243
[18] Zhao H H, Feng X S, Xiong Y Y, et al.Microstructure and properties of micro friction stir welded joint of Al-alloy ultra thin plate with zero tilt angle[J]. Trans. China Weld. Inst., 2014, 35(7): 47(赵慧慧, 封小松, 熊艳艳等. 铝合金超薄板无倾角微搅拌摩擦焊接头组织性能[J]. 焊接学报, 2014, 35(7): 47)
[19] Schmidt H, Hattel J, Wert J.An analytical model for the heat generation in friction stir welding[J]. Model. Simul. Mater. Sci. Eng., 2004, 12: 143
[20] Schmidt H B, Hattel J H.Thermal modelling of friction stir welding[J]. Scr. Mater., 2008, 58: 332
[21] Chen H Y, Fu Li, Liang P.Microstructure, texture and mechanical properties of friction stir welded butt joints of 2A97 Al-Li alloy ultra-thin sheets[J]. J. Alloys Compd., 2017, 692: 155
[22] Malopheyev S, Vysotskiy I, Kulitskity V, et al.Optimization of processing-microstructure-properties relationship in friction-stir welded 6061-T6 aluminum alloy[J]. Mater. Sci. Eng., 2016, A662: 136
[23] Liu F J, Fu L, Zhang W Y, et al.Interface structure and mechanical pro-perties of friction stir welding joint of 2099-T83/2060-T8 dissimilar Al-Li alloys[J]. Acta Metall. Sin., 2015, 51: 281(刘奋军, 傅莉, 张纹源等. 2099-T83/2060-T8异质Al-Li合金搅拌摩擦焊搭接界面结构与力学性能[J]. 金属学报, 2015, 51: 281)
[24] Sato Y S, Kokawa H, Enomoto M, et al.Microstructural evolution of 6063 aluminum during friction-stir welding[J]. Metall. Mater. Trans., 1999, 30A: 2429
[25] Sato Y S, Urata M, Kokawa H, et al.Hall-Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys[J]. Mater. Sci. Eng., 2003, A354: 298
[26] Sattari S, Bisadi H, Sajed M.Mechanical properties and temperature distributions of thin friction stir welded sheets of AA5083[J]. Int. J. Mech. Appl., 2012, 2: 1
[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[10] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[13] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.
[14] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[15] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.