Please wait a minute...
金属学报  2016, Vol. 52 Issue (10): 1183-1198    DOI: 10.11900/0412.1961.2016.00383
  论文 本期目录 | 过刊浏览 |
先进金属材料的第二相强化*
吕昭平(),蒋虽合,何骏阳,周捷,宋温丽,吴渊,王辉,刘雄军
北京科技大学新金属材料国家重点实验室, 北京 100083
SECOND PHASE STRENGTHENING IN ADVANCED METAL MATERIALS
Zhaoping LU(),Suihe JIANG,Junyang HE,Jie ZHOU,Wenli SONG,Yuan WU,Hui WANG,Xiongjun LIU
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

吕昭平, 蒋虽合, 何骏阳, 周捷, 宋温丽, 吴渊, 王辉, 刘雄军. 先进金属材料的第二相强化*[J]. 金属学报, 2016, 52(10): 1183-1198.
Zhaoping LU, Suihe JIANG, Junyang HE, Jie ZHOU, Wenli SONG, Yuan WU, Hui WANG, Xiongjun LIU. SECOND PHASE STRENGTHENING IN ADVANCED METAL MATERIALS[J]. Acta Metall Sin, 2016, 52(10): 1183-1198.

全文: PDF(13896 KB)   HTML
  
摘要: 

归纳总结了本课题组近几年来在几种典型的先进金属材料(高性能钢铁材料、高熵合金及块体非晶合金)中应用第二相强化机制的研究工作. 研究发现, 通过调控第二相与基体组织的界面特性和性能匹配, 可以有效调控第二相的尺寸、体积比及形貌等特征, 从而大幅度提高这些材料的综合力学性能.

关键词 金属材料第二相强化相界面力学性能    
Abstract

Second phase strengthening is a conventional, yet effective hardening methods for metallic materials. However, the resultant improvements on strength always associated by dramatic decreases in toughness. In this paper, the recent research work on applications of such mechanism into several typical advanced metallic materials including high-performance steels, high-entropy alloys and bulk metallic glasses were summarized. It was found that the characteristics of precipitates, i.e., sizes, volume fractions, morphology, etc., could be manipulated by controlling the interface features and mechanical mismatch of the precipitates and matrix, which eventually give rise to much enhanced mechanical performance.

Key wordsmetal material    second phase strengthening    phase boundary    mechanical property
收稿日期: 2016-08-26     
ZTFLH:     
基金资助:* 国家自然科学基金项目51531001, 51422101, 51271212和51371003, 高等学校学科创新引智计划项目B07003, 国家国际科技合作计划项目2015DFG52600, 教育部长江学者和创新团队项目IRT_14R05, 万人计划“青年拔尖人才”支持计划项目, 教育部新世纪优秀人才支持计划项目NCET-13-0663及中央高校基本科研业务费项目FRF-TP-15-004C1资助
图1  添加Al和Mo对低温析出相含量以及合金点阵常数的影响[14]
图2  Ni(Fe, Al)马氏体时效钢的时效行为及时效前后的拉伸曲线[14] (插图为传统马氏体时效钢时效造成强度及塑性的变化[33])
图3  Ni(Fe, Al)马氏体时效钢峰值时效前后的TEM像以及粒子的三维重构[14]
图4  Ni(Fe, Al)马氏体时效钢时效后的位错组织及位错线上的元素偏聚及附近粒子形貌[14]
图5  (FeCoNiCr)97Ti3 (TA30)高熵合金700 ℃时效80 h后析出相的TEM像
图6  TA39和TA14高熵合金时效后的SEM像
图7  TA15, TA33和TA24高熵合金时效后的SEM像
图8  Ti和Al添加的高熵合金的拉伸力学性能[16]
图9  Ti和Al添加的高熵合金中的析出相形貌及结构表征[16]
图10  时效温度对TA24高熵合金析出行为的影响
图11  时效时间对TA24高熵合金析出行为的影响
图12  Al含量对(Cu0.5Zr0.5)100-xAlx合金的组织特征的影响[18]
图13  Zr48Cu47.5Al4Co0.5样品的SEM像及拉伸前后的XRD谱[8]
图14  Zr48Cu47.5Al4Co0.5块体非晶复合材料铸态和拉伸后样品中晶体相和非晶相的显微硬度对比[8]
图15  Ti43.2Cu38Ni10Zr7.8Al0.5Si0.5的压缩应力-应变曲线(插图为其真应力-应变曲线)、压缩后的侧面形貌SEM像及其放大图以及压缩断口形貌[21]
图16  (Cu0.5Zr0.5)100-xAlx (x=0, 4, 6, 原子分数, %)非晶合金的DSC升温降温曲线及其过冷奥氏体等温转变曲线(TTT)图[18]
图17  Zr48Cu48Al4和Zr48Cu47.5Al4Co0.5的HRTEM像及对应的单个B2纳米晶的放大图(插图对应各自方框区域的SAED花样)[20]
图18  通过异质形核制备大尺寸相变诱发塑性(TRIP)效应非晶复合材料的设计思路[25]
图19  B2-CuZr和Zr5Sn3界面的HAADF-STEM像及其原子模型[25]
[1] Ardell A J.Metall Mater Trans, 1985; 16A: 2131
[2] Jiao Z B, Liu C T.Mater China, 2011; 30(12): 6
[2] (焦增宝, 刘锦川. 中国材料进展, 2011; 30(12): 6)
[3] Yamamoto Y, Brady M P, Lu Z P, Maziasz P J, Liu C T, Pint B A, More K L, Meyer H M, Payzant E A.Science, 2007; 316: 433
[4] Gladman T.Mater Sci Technol, 1998; 15: 30
[5] Jiao Z B, Luan J H, Miller M K, Liu C T.Acta Mater, 2015; 97: 58
[6] Pogatscher S, Antrekowitsch H, Leitner H, Sologubenko A S, Uggowitzer P J.Scr Mater, 2013; 68: 158
[7] Okuda T, Fujiwara M.J Mater Sci Lett, 1995; 14: 1600
[8] Wu Y, Xiao Y H, Chen G L, Liu C T, Lu Z P.Adv Mater, 2010; 22: 2770
[9] Ooi S W, Hill P, Rawson M, Bhadeshia H D.Mater Sci Eng, 2013; A564: 485
[10] Viswanathan U K, Dey G K, Asundi M K.Metall Trans, 1993; 24A: 2429
[11] Lu K, Lu L, Suresh S.Science, 2009; 324: 349
[12] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S.Adv Eng Mater, 2004; 6: 299
[13] Raabe D, Ponge D, Dmitrieva O, Sander B.Scr Mater, 2009; 60: 1141
[14] Jiang S H, Wang H, Wu Y, Liu X J, Chen H H, Gault B, Raabe D, Lu Z P.Submitted
[15] He J Y, Zhu C, Zhou D Q, Liu W H, Nieh T G, Lu Z P.Intermeta-llics, 2014; 55: 9
[16] He J Y, Wang H, Huang H L, Xu X D, Chen M W, Wu Y, Liu X J, Nieh T G, An K, Lu Z P.Acta Mater, 2016; 102: 187
[17] He J Y, Lei Z F, Wang H, Nieh T G, Lu Z P.Unpublished
[18] Wu Y, Wang H, Wu H H, Zhang Z Y, Hui X D, Chen G L, Ma D, Wang X L, Lu Z P.Acta Mater, 2011; 59: 2928
[19] Wu Y, Song W L, Zhang Z Y, Hui X D, Ma D, Wang X L, Shang X C, Lu Z P.Chin Sci Bull, 2011; 56: 3960
[20] Wu Y, Zhou D Q, Song W L, Wang H, Zhang Z Y, Ma D, Wang X L, Lu Z P.Phy Rev Lett, 2012; 109: 245506
[21] Zhang Z Y, Wu Y, Zhou J, Wang H, Liu X J, Lu Z P.Scr Mater, 2013; 69: 73
[22] Zhang Z Y, Wu Y, Zhou J, Song W L, Cao D, Wang H, Liu X J, Lu Z P.Intermetallics, 2013; 42: 68
[23] Zhou D Q, Wu Y, Wang H, Hui X D, Liu X J, Lu Z P.Comput Mater Sci, 2013; 79: 187
[24] Song W L, Song K K, Liu Z Q, Li R, Wu Y, Lu Z P.Mater China, 2014; 33: 300
[24] (宋温丽, 宋凯凯, 刘增乾, 李然, 吴渊, 吕昭平. 中国材料进展, 2014; 33: 300)
[25] Song W L, Wu Y, Wang H, Liu X J, Chen H W, Guo Z X, Lu Z P.Adv Mater, 2016; DOI: 10.1002/adma.20161954
[26] Decker R F, Eash J T, Goldman A J.Trans ASM, 1962; 55: 58
[27] Sha W, Cerezo A, Smith G D W.Metall Trans, 1993; 24A: 1251
[28] Millán J, Sandl?bes S, Al-Zubi A, Hickel T, Choi P, Neugebauer J, Raabe D.Acta Mater, 2014; 76: 94
[29] Vasudevan V K, Kim S J, Wayman C M.Metall Trans, 1990; 21A: 2655
[30] Vanderwalker D.Metall Trans, 1987; 18A: 1191
[31] Viswanathan U K, Dey G K, Asundi M K.Metall Trans, 1993; 24A: 2429
[32] Vasudevan V K, Kim S J, Wayman C M.Metall Trans, 1990; 21A: 2655
[33] Sha W, Guo Z.Nephrology, 2009; 18: 724
[34] He Y, Yang K, Liu K, Sha W, Guo Z L.Metall Mater Trans, 2006; 37A: 1107
[35] Teng Z K, Ghosh G, Miller M K, Huang S, Clausen B, Brown D W, Liaw P K.Acta Mater, 2012; 60: 5362
[36] Nitta H.Acta Mater, 2002; 50: 4117
[37] Hettich G, Mehrer H, Maier K.Scr Metall, 1977; 11: 795
[38] Bergner D, Khaddour Y.Defect Diffus Forum, 1993; 95: 709
[39] Gale W F, Totemeier T C.Smithells Metals Reference Book. 8th Ed., Oxford: Butterworth-Heinemann Ltd, 2003: 1
[40] Kelly A, Nicholson R S.Int Mater Rev, 1972; 17: 147
[41] Cantor B, Chang I T H, Knight P, Vincent A J B.Mater Sci Eng, 2004; A375: 213
[42] Wu Y, Liu W H, Wang X L, Ma D, Stoica A D, Nieh T G, He Z B, Lu Z P.Appl Phys Lett, 2014; 104: 051910
[43] Liu W H, Wu Y, He J Y, Nieh T G, Lu Z P.Scr Mater, 2013; 68: 526
[44] Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, Ritchie R O.Science, 2014; 345: 1153
[45] Senkov O N, Scott J M, Senkova S V, Miracle D B, Woodward C F.J Alloys Compd, 2011; 509: 6043
[46] Yeh J W, Chang S Y, Hong Y D, Chen S K, Lin S J.Mater Chem Phys, 2007; 103: 41
[47] Tsai K Y, Tsai M H, Yeh J W.Acta Mater, 2013; 61: 4887
[48] Senkov O N, Wilks G B, Scott J M, Miracle D B.Intermetallics, 2011; 19: 698
[49] Otto F, Dlouhy A, Somsen C, Bei H, Eggeler G, George E P.Acta Mater, 2013; 61: 5743
[50] Liu W H.Master Thesis, University of Science and Technology Beijing, 2011
[50] (刘卫红. 北京科技大学硕士学位论文, 2011)
[51] Marquis E A, Seidman D N.Acta Mater, 2001; 49: 1909
[52] Huang L, Wang H, Yang D H, Ye F, Lu Z P.Intermetallics, 2012; 28: 71
[53] Wang S C, Starink M J.Int Mater Rev, 2005; 50: 193
[54] Balikci E, Raman A, Mirshams R A.J Mater Eng Perform, 2000; 9: 324
[55] Chen S T, Tang W Y, Kuo Y F, Chen S Y, Tsau C H, Shun T T, Yeh J W.Mater Sci Eng, 2010; A527: 5818
[56] Tsai M H, Yuan H, Cheng G M, Xu W Z, Tsai K Y, Tsai C W, Jian W W, Juan C C, Shen W J, Chuang M H, Yeh J W, Zhu Y T.Intermetallics, 2013; 32: 329
[57] Porter A, Ralph B.J Mater Sci, 1981; 16: 707
[58] Johnson W L.MRS Bull, 1999; 24: 42
[59] Schuh C A, Hufnagel T C, Ramamurty U.Acta Mater, 2007; 55: 4067
[60] Chen M W.Annu Rev Mater Res, 2008; 38: 445
[61] Zhang Z F, Eckert J, Schultz L.Acta Mater, 2003; 51: 1167
[62] Wu F F, Zhang Z F, Mao S X, Peker A, Eckert J.Phys Rev, 2007; 75B: 134201
[63] Johnson W L, Plummer J.Nat Mater, 2015; 14: 553
[64] Hays C C, Kim C P, Johnson W L.Phys Rev Lett, 2000; 83: 2901
[65] Chen G, Bei H, Cao Y, Gali A, Liu C T, George E P.Appl Phys Lett, 2009; 95: 081908
[66] Fan C, Li H Q, Kecskes L J, Tao K X, Choo H, Liaw P K, Liu C T.Phy Rev Lett, 2006; 96: 145506
[67] Guo S F, Liu L, Li N, Li Y.Scr Mater, 2010; 62: 329
[68] Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M L, Demetrious M D, Johnson W L.Nature, 2008; 451: 1085
[69] Hofmann D C, Suh J Y, Wiest A, Lind M L, Demetrious M D, Johnson W L.Proc Natl Acad Sci USA, 2008; 105: 20136
[70] Zackay V F, Parker E R, Fahr D, Busch R.Trans ASM, 1967; 60: 252
[71] Jacques P J, Furnemont Q, Lani F, Pardoen T, Delannay F.Acta Mater, 2007; 55: 3681
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[14] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.