Please wait a minute...
金属学报  2004, Vol. 40 Issue (9): 948-954     
  论文 本期目录 | 过刊浏览 |
时效处理对针状铁素体管线钢力学性能和抗硫化氢行为的影响
赵明纯 单以银 杨柯
中国科学院金属研究所; 沈阳110016; 日本国立材料研究所; 筑波 3050047; 日本
Effect of Aging Treatment on Mechanical Property and H2S Resistant Behavior of Acicular Ferrite Pipeline Steels
ZHAO Mingchun; SHAN Yiyin; YANG Ke
Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
引用本文:

赵明纯; 单以银; 杨柯 . 时效处理对针状铁素体管线钢力学性能和抗硫化氢行为的影响[J]. 金属学报, 2004, 40(9): 948-954 .
, , . Effect of Aging Treatment on Mechanical Property and H2S Resistant Behavior of Acicular Ferrite Pipeline Steels[J]. Acta Metall Sin, 2004, 40(9): 948-954 .

全文: PDF(16443 KB)  
摘要: 在600 ℃左右进行时效处理, 可使针状铁素体管线钢强度水平大幅度提高而基本不降低韧性和延性. 在600 ℃保温10 h, 针状铁素体管线钢在保持塑、韧性的基础上, 强度水平提升到接近X 100级别要求,且明显改善了其抗H2S开裂性能. 有利作用主要归因于时效处理促进了针状铁素体中微合金碳氮化物的进一步沉淀析出, 马氏体/奥氏体(M/A)岛转变成回火马氏体,以及组织更加均匀化. 时效处理为发展高强度级别针状铁素体管线钢提供了新的思路.
关键词 管线钢针状铁素体力学性能    
Abstract:Hot-rolled acicular ferrite pipeline steel plate can be further strengthened by aging treatment. After an aging treatment at 600 ℃ for 10 h, the acicular ferrite pipeline steel plate is strengthened to the level of X 100 while its impact toughness does not obviously decrease. At the same time, its H2S cracking resistant ability is also improved obviously. All these can be attributed to the additional precipitation of micro-alloyed carbonitrides, the transformation of martensite/austenite (M/A) islands to tempering martensite and the improvement of the uniformity in acicular ferrite microstructure during aging treatment.
Key wordspipeline steel    acicular ferrite    mechanical property
收稿日期: 2003-09-25     
ZTFLH:  TG335  
[1] Kaneko T, Ikeda A. Trans Iron Steel Inst Jpn, 1988; 28: 575
[2] Margot-Marette H, Bardou G, Charbonnier J C. Corros Sci, 1987; 27: 1009
[3] Yong Q L, Ma M T, Wu B R. Microalloy Steel-Physical, Mechanic and Metallurgy. Beijing: China Machine Industry Press,1989: 84(雍岐龙,马鸣图,吴宝榕.微合金钢--物理和力学冶金.北京:机械工业出版社, 1989:84)
[4] Echaniz G, Morales C, Perez T. In: Corrosion/98, Houston, Texas: NACE, 1998: 120
[5] Watkins M, Ayer R. In: Corrosion/95, Houston, Texas: NAGE, 1995: 50
[6] Ikeda A, Kowaka M. Chem Econ Eng Rev, 1978; 10: 1
[7] Lopez H F, Bharadwaj R, Albarran J L, Martinez L. Met-all Mater Trans, 1999; 30A: 2419
[8] Zhao M C, Tang B, Shan Y Y, Yang K. Metall Mater Trans, 2003; 34A: 1089
[9] Zhao M C. PhD Dissertation, Institute of Metal Research, The Chinese Academy of Sciences, Shenyang, 2003(赵明纯.中国科学院金属研究所博士学位论文,沈阳,2003)
[10] NACE Standard TM0177-96, Laboratory Testing of Metals for Resistance to Specific Forms of Environmental Cracking in H2S Environments, 1996, NACE
[11] Smith Y E, Coldren A P, Cryderman R L. Toward An- proved Ductility and Toughness. Tokyo: Climax Molybdenum Company Ltd., 1972:119
[12] Lutz M, translated by Zhao H. Optimum of Mechanical Property on Strip Steel During Control Rolling and Control Cooling. Beijing: Metallurgical Industry Press, 1996: 41(Lutz M著,赵辉译.带钢轧制过程中材料性能的优化.北京:冶金工业出版社, 1996:41)
[13] Yoshie A, Fujioka M, Watanabe Y, Nishioka K, MorikawaH. ISIJ Int, 1992; 32: 395
[14] Dong Z Q, Zhou S C. Metal Material and Heat Treatment.Changsha: Central South University of Technology Press,1989; 202(邓至谦,周善初.金属材料及热处理.长沙:中南工业大学出版社,1989:202)
[15] Li H L, Guo S W, Feng Y R, Huo C Y, Chai H F. An Illustrative Collection of Micro structure Micrographs. Beijing: Petroleum Industry Press, 2001: 11(李鹤林,郭生武,冯耀荣,霍春勇,柴惠芬.高强度微合金管线钢显微组织分析与鉴别图谱.北京:石油工业出版社,2001:111
[16] Liu Y X. Heat Treatment for Metals. Beijing: China Machine Industry Press, 1981: 61(刘云旭.金属热处理原理.北京:机械工业出版社,1981:61)
[17] Cui Z Q. Metallurgy and Heat Treatment. Beijing: China Machine Industry Press, 1997: 258(崔忠圻.金属学与热处理(铸造、焊接专业用).北京:机械工业出版社,1997:258)
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.