|
|
材料素化:概念、原理及应用 |
杨乐, 李秀艳( ), 卢柯( ) |
中国科学院金属研究所沈阳材料科学国家(联合)实验室 沈阳 110016 |
|
Making Materials Plain: Concept, Principle and Applications |
Le YANG, Xiuyan LI( ), Ke LU( ) |
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
杨乐, 李秀艳, 卢柯. 材料素化:概念、原理及应用[J]. 金属学报, 2017, 53(11): 1413-1417.
Le YANG,
Xiuyan LI,
Ke LU.
Making Materials Plain: Concept, Principle and Applications[J]. Acta Metall Sin, 2017, 53(11): 1413-1417.
[1] | Reed R.The Superalloys: Fundamental and Applications [M]. New York: Cambridge University Press, 2006: 1 | [2] | Reck B K, Graedel T E.Challenges in metal recycling[J]. Science, 2012, 337: 690 | [3] | Cai W, Nix W D.Imperfections in Crystalline Solids [M]. London: Cambridge University Press, 2016: 1 | [4] | Rigney D A.Dislocation content at large plastic strains[J]. Scr. Metall., 1979, 13: 353 | [5] | Lu K.Stabilizing nanostructures in metals using grain and twin boundary architectures[J]. Nat. Rev. Mater., 2016, 1: 16019. | [6] | Li Y S, Tao N R, Lu K.Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures[J]. Acta Mater., 2008, 56: 230 | [7] | Lu K, Lu L, Suresh S.Strengthening materials by engineering coherent internal boundaries at the nanoscale[J]. Science, 2009, 324: 349 | [8] | Liu X C, Zhang H W, Lu K.Strain-induced ultrahard and ultrastable nanolaminated structure in nickel[J]. Science, 2013, 342: 337 | [9] | Hasnaoui A, Van Swygenhoven H, Derlet P M.On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour: A molecular dynamics computer simulation[J]. Acta Mater., 2002, 50: 3927 | [10] | Lu L, Shen Y F, Chen X H, et al.Ultrahigh strength and high electrical conductivity in copper[J]. Science, 2004, 304: 422 | [11] | Weissmüller J.Alloy effects in nanostructures[J]. Nanostruct. Mater., 1993, 3: 261 | [12] | Chookajorn T, Murdoch H A, Schuh C A.Design of stable nanocrystalline alloys[J]. Science, 2012, 337: 951 | [13] | Huang H W, Wang Z B, Lu J, et al.Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer[J]. Acta Mater., 2015, 87: 150 | [14] | Chen X, Han Z, Li X Y, et al.Lowering coefficient of friction in Cu alloys with stable gradient nanostructures[J]. Sci. Adv., 2016, 2: e1601942 | [15] | Meyers M A, Mishra A, Benson D J.Mechanical properties of nanocrystalline materials[J]. Prog. Mater. Sci., 2006, 51: 427 | [16] | Li Y J, Raabe D, Herbig M, et al.Segregation stabilizes nanocrystalline bulk steel with near theoretical strength[J]. Phys. Rev. Lett., 2014, 113: 106104 | [17] | Bouaziz O, Bréchet Y, Embury J D.Heterogeneous and architectured materials: A possible strategy for design of structural materials[J]. Adv. Eng. Mater., 2008, 10: 24 | [18] | Fang T H, Li W L, Tao N R, et al.Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper[J]. Science, 2011, 331: 1587 | [19] | Lu K.Making strong nanomaterials ductile with gradients[J]. Science, 2014, 345: 1455 | [20] | Kimura Y, Inoue T, Yin F X, et al.Inverse temperature dependence of toughness in an ultrafine grain-structure steel[J]. Science, 2008, 320: 1057 | [21] | Munch E, Launey M E, Alsem D H, et al.Tough, bio-inspired hybrid materials[J]. Science, 2008, 322: 1516 | [22] | Wu X, Jiang P, Chen L, et al.Extraordinary strain hardening by gradient structure[J]. Proc. Natl. Acad. Sci. U.S.A., 2014, 111: 7197 | [23] | Ashby M.Materials Selection in Mechanical Design[M]. 3rd Ed., Oxford: Elsevier, 2005: 1 | [24] | Liu X C, Zhang H W, Lu K.Formation of nanolaminated structure in an interstitial-free steel[J]. Scr. Mater., 2015, 95: 54 | [25] | Li X Y, Lu K.Playing with defects in metals[J]. Nat. Mater., 2017, 16: 700 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|