Please wait a minute...
金属学报  2017, Vol. 53 Issue (11): 1413-1417    DOI: 10.11900/0412.1961.2017.00316
  研究论文 本期目录 | 过刊浏览 |
材料素化:概念、原理及应用
杨乐, 李秀艳(), 卢柯()
中国科学院金属研究所沈阳材料科学国家(联合)实验室 沈阳 110016
Making Materials Plain: Concept, Principle and Applications
Le YANG, Xiuyan LI(), Ke LU()
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

杨乐, 李秀艳, 卢柯. 材料素化:概念、原理及应用[J]. 金属学报, 2017, 53(11): 1413-1417.
Le YANG, Xiuyan LI, Ke LU. Making Materials Plain: Concept, Principle and Applications[J]. Acta Metall Sin, 2017, 53(11): 1413-1417.

全文: PDF(1724 KB)   HTML
摘要: 

工程合金的性能提升通常利用合金化来实现,但是随着材料合金化程度的不断提高,材料性能提升趋缓,而材料的资源依赖性、成本和回收利用难度不断提高。随着材料的可持续性成为当今材料发展日益重要的指标,新的材料发展途径亟待研发。本工作提出在不改变材料成分的前提下,通过调控材料不同尺度的缺陷来制造出可持续发展的“素材料”,实现材料“素化”,不(或少)依赖合金化并大幅度提高材料的综合性能。本文将介绍材料素化的概念和基本原理,并展望其工业应用。

关键词 材料素化素材料缺陷合金化    
Abstract

Alloying is conventionally used for advancing properties of engineering materials. But with increasing degree of alloying, materials become more resource dependent and more costly, and recycling and reuse of materials become more difficult. As nowadays sustainability is becoming a more and more important index for materials development, novel strategies for sustainable materials development is highly desired. In this paper, a sustainable “plain” approach to advancing materials without changing chemical compositions is proposed, i.e., architecturing imperfections across different length-scales. Novel properties and performance can be achieved in the “plain” materials with less alloying or even non-alloying. Basic concept, principle, as well as potential applications of the “plain materials” approach will be introduced.

Key wordsmaking materials plain    plain material    imperfection    alloying
收稿日期: 2017-07-26     
ZTFLH:  TG146  
基金资助:国家重点基础研究发展计划项目No.2012CB932201,国家自然科学基金项目No.51231006和中国科学院重点部署项目No.KGZD-EW-T06
作者简介:

作者简介 杨 乐,男,1983年生,博士

图1  3种不同制造工艺的高温合金近60年的发展趋势图[1]
图2  几类钢的屈服强度-断裂延伸率关系图[25]
图3  使用传统方法和素材料技术制备传动部件的工艺流程图
[1] Reed R.The Superalloys: Fundamental and Applications [M]. New York: Cambridge University Press, 2006: 1
[2] Reck B K, Graedel T E.Challenges in metal recycling[J]. Science, 2012, 337: 690
[3] Cai W, Nix W D.Imperfections in Crystalline Solids [M]. London: Cambridge University Press, 2016: 1
[4] Rigney D A.Dislocation content at large plastic strains[J]. Scr. Metall., 1979, 13: 353
[5] Lu K.Stabilizing nanostructures in metals using grain and twin boundary architectures[J]. Nat. Rev. Mater., 2016, 1: 16019.
[6] Li Y S, Tao N R, Lu K.Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures[J]. Acta Mater., 2008, 56: 230
[7] Lu K, Lu L, Suresh S.Strengthening materials by engineering coherent internal boundaries at the nanoscale[J]. Science, 2009, 324: 349
[8] Liu X C, Zhang H W, Lu K.Strain-induced ultrahard and ultrastable nanolaminated structure in nickel[J]. Science, 2013, 342: 337
[9] Hasnaoui A, Van Swygenhoven H, Derlet P M.On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour: A molecular dynamics computer simulation[J]. Acta Mater., 2002, 50: 3927
[10] Lu L, Shen Y F, Chen X H, et al.Ultrahigh strength and high electrical conductivity in copper[J]. Science, 2004, 304: 422
[11] Weissmüller J.Alloy effects in nanostructures[J]. Nanostruct. Mater., 1993, 3: 261
[12] Chookajorn T, Murdoch H A, Schuh C A.Design of stable nanocrystalline alloys[J]. Science, 2012, 337: 951
[13] Huang H W, Wang Z B, Lu J, et al.Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer[J]. Acta Mater., 2015, 87: 150
[14] Chen X, Han Z, Li X Y, et al.Lowering coefficient of friction in Cu alloys with stable gradient nanostructures[J]. Sci. Adv., 2016, 2: e1601942
[15] Meyers M A, Mishra A, Benson D J.Mechanical properties of nanocrystalline materials[J]. Prog. Mater. Sci., 2006, 51: 427
[16] Li Y J, Raabe D, Herbig M, et al.Segregation stabilizes nanocrystalline bulk steel with near theoretical strength[J]. Phys. Rev. Lett., 2014, 113: 106104
[17] Bouaziz O, Bréchet Y, Embury J D.Heterogeneous and architectured materials: A possible strategy for design of structural materials[J]. Adv. Eng. Mater., 2008, 10: 24
[18] Fang T H, Li W L, Tao N R, et al.Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper[J]. Science, 2011, 331: 1587
[19] Lu K.Making strong nanomaterials ductile with gradients[J]. Science, 2014, 345: 1455
[20] Kimura Y, Inoue T, Yin F X, et al.Inverse temperature dependence of toughness in an ultrafine grain-structure steel[J]. Science, 2008, 320: 1057
[21] Munch E, Launey M E, Alsem D H, et al.Tough, bio-inspired hybrid materials[J]. Science, 2008, 322: 1516
[22] Wu X, Jiang P, Chen L, et al.Extraordinary strain hardening by gradient structure[J]. Proc. Natl. Acad. Sci. U.S.A., 2014, 111: 7197
[23] Ashby M.Materials Selection in Mechanical Design[M]. 3rd Ed., Oxford: Elsevier, 2005: 1
[24] Liu X C, Zhang H W, Lu K.Formation of nanolaminated structure in an interstitial-free steel[J]. Scr. Mater., 2015, 95: 54
[25] Li X Y, Lu K.Playing with defects in metals[J]. Nat. Mater., 2017, 16: 700
[1] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[2] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[3] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[4] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[5] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[6] 陈继林, 冯光宏, 马洪磊, 杨栋, 刘维. Cr-Mo微合金冷镦钢的显微组织、力学性能及强化机制[J]. 金属学报, 2022, 58(9): 1189-1198.
[7] 刘广, 陈鹏, 姚锡禹, 陈朴, 刘星辰, 刘朝阳, 严明. CrMoTi中熵合金的性能及其原位合金化增材制造[J]. 金属学报, 2022, 58(8): 1055-1064.
[8] 张金钰, 屈启蒙, 王亚强, 吴凯, 刘刚, 孙军. 金属/高熵合金纳米多层膜的力学性能及其辐照效应研究进展[J]. 金属学报, 2022, 58(11): 1371-1384.
[9] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[10] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.
[11] 易晓鸥, 韩文妥, 刘平平, FERRONIFrancesco, 詹倩, 万发荣. 金属W中辐照缺陷的产生、演化与热回复机制[J]. 金属学报, 2021, 57(3): 257-271.
[12] 高一涵, 刘刚, 孙军. 耐热铝基合金研究进展:微观组织设计与析出策略[J]. 金属学报, 2021, 57(2): 129-149.
[13] 刘健, 彭钦, 谢建新. 选区激光熔化René 88DT高温合金的晶粒组织及冶金缺陷调控[J]. 金属学报, 2021, 57(2): 191-204.
[14] 陈虹宇, 宋欣, 周相龙, 贾文涛, 袁涛, 马天宇. Sm2Co17磁体胞状组织边缘2:17R'相的透射电子显微镜表征[J]. 金属学报, 2021, 57(12): 1637-1644.
[15] 王慧远, 夏楠, 布如宇, 王珵, 查敏, 杨治政. 低合金化高性能变形镁合金研究现状及展望[J]. 金属学报, 2021, 57(11): 1429-1437.