Please wait a minute...
金属学报  2017, Vol. 53 Issue (8): 1001-1010    DOI: 10.11900/0412.1961.2016.00475
  本期目录 | 过刊浏览 |
退火温度对ARB-Cu室温拉伸断裂行为的影响
李敏, 刘静, 姜庆伟()
昆明理工大学材料科学与工程学院 昆明 650093
Effect of Annealing Temperature on Tensile Fracture Behavior of ARB-Cu at Room Temperature
Min LI, Jing LIU, Qingwei JIANG()
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
全文: PDF(1504 KB)   HTML
摘要: 

利用TEM观察累积叠轧法(ARB)制备的超细晶Cu的微观结构,在IBTC-5000单轴疲劳试验机上对制备态及不同温度退火态的ARB-Cu进行单向静态拉伸实验,通过SEM观察力学测试后试样的断口形貌。结果表明:在实验温度范围内,退火处理均使ARB-Cu的屈服强度和抗拉强度下降,当退火温度低于再结晶温度时,ARB-Cu的屈服强度和抗拉强度均随退火温度的升高而升高;当退火温度高于再结晶温度时,其强度迅速下降。当退火温度为200 ℃时,ARB-Cu的屈服强度和抗拉强度达到退火态最大值。随退火温度的升高,ARB-Cu的晶粒尺寸略微增大,晶粒分布逐渐由制备态的单峰分布转变为双峰分布,断口形貌显示出塑性逐渐增加的趋势。退火处理有助于ARB材料焊合界面结合强度的提高,退火温度越高,焊合界面结合性能越好。焊合界面经历的叠轧道次越多,其结合效率越高,其理论计算公式为E=(1-0.5n)×100%。

关键词 超细晶累积叠轧退火微观结构断口形貌    
Abstract

Annealing treatment is an effective method for improving structural stability of ultrafine-grained (UFG) or nanostructured (NS) materials produced by severe plastic deformation (SPD). This work focuses on the effect of annealing temperature on the tensile fracture behavior of UFG Cu produced by accumulative roll bonding (ARB). Annealing treatment was performed for 10 min at temperatures of 100, 150, 200 and 250 ℃. The microstructure of annealed and ARBed UFG Cu was observed by TEM. The uniaxial static tensile test was performed by utilizing fatigue testing machine (IBTC-5000) with an initial strain rate of 10-2 s-1. Fracture morphology was observed by SEM. The results suggested that yield strength and tensile strength decreased after annealing treatment compared with initial sample. However, yield strength and tensile strength of ARB-Cu increased with increasing annealing temperature below recrystallization temperature. When annealing temperature is higher than recrystallization temperature, the strength decreased rapidly. With increasing the annealing temperature, the grain size of ARB-Cu increases and gradually tends to bimodal distribution, and the fracture morphology shows a trend of increasing plasticity gradually. The annealing treatment is helpful to bonding efficiency E. The relationship between the theoretical bonding efficiency E and the ARB passes n can be expressed in E=(1-0.5n)×100%.

Key wordsultrafine grain    accumulative rolling bonding    annealing    microstructure    fracture morphology
收稿日期: 2016-10-25      出版日期: 2017-05-15
:  TG146  
基金资助:国家自然科学基金项目No.51201077
作者简介:

作者简介 李 敏,女,1992年生,博士生

引用本文:

李敏, 刘静, 姜庆伟. 退火温度对ARB-Cu室温拉伸断裂行为的影响[J]. 金属学报, 2017, 53(8): 1001-1010.
Min LI, Jing LIU, Qingwei JIANG. Effect of Annealing Temperature on Tensile Fracture Behavior of ARB-Cu at Room Temperature. Acta Metall, 2017, 53(8): 1001-1010.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00475      或      http://www.ams.org.cn/CN/Y2017/V53/I8/1001

图1  制备态和不同温度退火态累积叠轧(ARB)-Cu的TEM像
图2  退火温度对ARB-Cu晶粒尺寸分布的影响
图3  退火温度对ARB-Cu力学性能的影响
图4  制备态及不同温度退火态ARB-Cu单向拉伸后的断口侧视形貌图
图5  ARB-Cu的剖面SEM像
图6  制备态及不同温度退火态ARB-Cu单向拉伸后的断口形貌
图7  ARB工艺焊合界面结合示意图
i n E / %
1 6 98.4
2 5 96.9
3 4 93.8
4 3 87.5
5 2 75.0
6 1 50.0
表1  ARB叠轧焊合界面结合效率(E)与经历轧制道次(n)
图8  ARB-Cu焊合界面结合强度指标随该界面所经历轧制道次及退火温度的变化
[1] Murashkin M Y, Sabirov I, Medvedev A E, et al.Mechanical and electrical properties of an ultrafine grained Al-8.5 wt. % RE (RE=5.4 wt.% Ce, 3.1 wt.% La) alloy processed by severe plastic deformation[J]. Mater. Des., 2016, 90: 433
[2] Valiev R Z, Estrin Y, Horita Z, et al.Producing bulk ultrafine-grained materials by severe plastic deformation[J]. JOM, 2006, 58(4): 33
[3] Khatibi G, Horky J, Weiss B, et al.High cycle fatigue behaviour of copper deformed by high pressure torsion[J]. Int. J. Fatigue, 2010, 32: 269
[4] Zhan M Y, Li C M, Zhang W W.An EBSD study on the microstructure and texture evolution of AZ31 magnesium alloy during accumulative roll-bonding[J]. Acta Metall. Sin., 2012, 48: 709(詹美燕, 李春明, 张卫文. 累积叠轧焊AZ31镁合金微观组织和织构演变的EBSD研究[J]. 金属学报, 2012, 48: 709)
[5] Tao N R, Lu K.Preparation techniques for nano-structured metallic materials via plastic deformation[J]. Acta Metall. Sin., 2014, 50: 141(陶乃镕, 卢柯. 纳米结构金属材料的塑性变形制备技术[J]. 金属学报, 2014, 50: 141)
[6] Renk O, Hohenwarter A, Eder K, et al.Increasing the strength of nanocrystalline steels by annealing: Is segregation necessary?[J]. Scr. Mater., 2015, 95: 27
[7] Valiev R Z, Sergueeva A V, Mukherjee A K.The effect of annealing on tensile deformation behavior of nanostructured SPD titanium[J]. Scr. Mater., 2003, 49: 669
[8] Jiang Q W, Li X W.Effect of pre-annealing treatment on the compressive deformation and damage behavior of ultrafine-grained copper[J]. Mater. Sci. Eng., 2012, A546: 59
[9] Huang X X, Hansen N, Tsuji N.Hardening by annealing and softening by deformation in nanostructured metals[J]. Science, 2006, 312: 249
[10] Qin X Y, Lee J S, Lee C S.Microstructures and mechanical behavior of bulk nanocrystalline γ-Ni-Fe produced by a mechanochemical method[J]. J Mater. Res., 2002, 17: 991
[11] Kamikawa N, Huang X X, Tsuji N, et al.Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed[J]. Acta Mater., 2009, 57: 4198
[12] Vinogradov A, Kaneko Y, Kitagawa K, et al.Cyclic response of ultrafine-grained copper at constant plastic strain amplitude[J]. Scr. Mater., 1997, 36: 1345
[13] Han W Z, Wu S D, Li S X, et al. Intermediate annealing of pure copper during cyclic equal channel angular pressing [J]. Mater. Sci. Eng., 2008, A483-484: 430
[14] Hongo T, Edalati K, Arita M, et al.Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion[J]. Acta Mater., 2015, 92: 46
[15] Pal-Val P, Pal-Val L, Natsik V, et al.Giant young's modulus variations in ultrafine-grained copper caused by texture changes at post-SPD heat treatment[J]. Arch. Metall. Mater., 2015, 60: 3073
[16] Ren J W, Shan A D.Strengthening and stress drop of ultrafine grain aluminum after annealing[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 2139
[17] Zhao F X, Xu X C, Liu H Q, et al.Effect of annealing treatment on the microstructure and mechanical properties of ultrafine-grained aluminum[J]. Mater. Des., 2014, 53: 262
[18] Tsuji N, Ito Y, Saito Y, et al.Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing[J]. Scr. Mater., 2002, 47: 893
[19] Wang J L, Shi Q N, Qian T C, et al.Recrystallized microstructural evolution of UFG copper prepared by asymmetrical accumulative rolling-bonding process[J]. Trans. Nonferrous Met. Soc., 2010, 20: 559
[20] Dai X Z, Liu J, Han J T.Study on the microstructure and mechanical properties of ultra-fine grain copper strip[J]. Shandong Metall., 2007, 28(5): 40(代秀芝, 刘靖, 韩静涛. 超细晶铜带材的组织及力学性能研究[J]. 山东冶金, 2007, 28(5): 40)
[21] Zhou L, Shi Q N, Wang J L, et al.Effects of recrystallization annealing temperature and time on upon twins in pure copper by AARB[J]. Hot Work. Technol., 2012, 41(13): 29(周蕾, 史庆南, 王军丽等. 异步累积叠轧纯铜再结晶温度、时间对孪晶的影响[J]. 热加工工艺, 2012, 41(13): 29)
[22] Wang J L, Shi Q N, Wang X Q.Study on microstructure and orientation evolution of ultra-fine grained copper prepared by asymmetrical accumulative rolling bonding (AARB) during annealing[J]. J. Mater. Eng., 2008, (11): 5(王军丽, 史庆南, 王效琪. 异步累积叠轧技术制备超细晶铜材退火过程组织及取向研究[J]. 材料工程, 2008, (11): 5)
[23] Xie Z L, Wu X L, Xie J J, et al.Microstructures and compression properties of copper specimens deformed by high-pressure torsion[J]. Acta Metall. Sin., 2008, 44: 803(谢子令, 武晓雷, 谢季佳等. 高压扭转铜试样的微观组织与压缩性能[J]. 金属学报, 2008, 44: 803)
[24] Fattah-Alhosseini A, Imantalab O, Mazaheri Y, et al.Microstructural evolution, mechanical properties, and strain hardening behavior of ultrafine grained commercial pure copper during the accumulative roll bonding process[J]. Mater. Sci. Eng., 2016, A650: 8
[25] Azushima A, Kopp R, Korhonen A, et al.Severe plastic deformation (SPD) processes for metals[J]. CIRP Ann. Manuf. Technol., 2008, 57: 716
[1] 刘国怀, 李天瑞, 徐莽, 付天亮, 李勇, 王昭东, 王国栋. 累积叠轧TC4钛合金的组织演化与力学性能[J]. 金属学报, 2017, 53(9): 1038-1046.
[2] 董丹,蒋百灵,郭萌,杨超. 碳基非晶镀层的纳米晶诱发机理及其摩擦学性能研究[J]. 金属学报, 2017, 53(7): 879-887.
[3] 巩劭廷, 蒋成保, 张天丽. Fe对SmCo基高温永磁体微观结构及矫顽力的影响[J]. 金属学报, 2017, 53(6): 726-732.
[4] 马江南,王瑞珍,杨才福,查小琴,张利娟. 中厚板表层超细晶对止裂性能的影响[J]. 金属学报, 2017, 53(5): 549-558.
[5] 常海,郑明毅,甘为民. 室温累积叠轧Mg/Al多层复合板材的界面表征[J]. 金属学报, 2017, 53(2): 220-226.
[6] 于振涛, 余森, 程军, 麻西群. 新型医用钛合金材料的研发和应用现状[J]. 金属学报, 2017, 53(10): 1238-1264.
[7] 潘瑜, 张殿涛, 谭雨宁, 李珍, 郑玉峰, 李莉. 等通道挤压制备医用超细晶Mg-3Sn-0.5Mn合金及其力学性能[J]. 金属学报, 2017, 53(10): 1357-1363.
[8] 明洪亮,张志明,王俭秋,韩恩厚,苏明星. 国产核电安全端异种金属焊接件的微观结构及局部性能研究[J]. 金属学报, 2017, 53(1): 57-69.
[9] 李飞,张华煜,何文武,陈慧琴,郭会光. Mn18Cr18N奥氏体不锈钢的压缩拉伸连续加载变形行为*[J]. 金属学报, 2016, 52(8): 956-964.
[10] 楼白杨,王宇星. Mo含量对CrMoAlN薄膜微观结构和摩擦磨损性能的影响*[J]. 金属学报, 2016, 52(6): 727-733.
[11] 郭巍巍,齐成军,李小武. 共轭和临界双滑移取向Cu单晶体疲劳位错结构的热稳定性研究*[J]. 金属学报, 2016, 52(6): 761-768.
[12] 李维丹,谭晓华,任科智,刘洁,徐晖. Nd2Fe14B/α-Fe系纳米晶复合永磁合金的磁黏滞行为及其交互作用*[J]. 金属学报, 2016, 52(5): 561-566.
[13] 李眉娟,刘晓龙,刘蕴韬,郑明毅,王琛,陈东风. 累积叠轧Mg/Al多层复合板材的织构演变及力学性能*[J]. 金属学报, 2016, 52(4): 463-472.
[14] 张笃秀, 李祎, 叶友雄, 沈阳志, 杨续跃. 微量Fe对冷轧超细晶Cu-30Zn-0.15Fe合金等温退火组织演化的影响*[J]. 金属学报, 2016, 52(3): 369-377.
[15] 陈思,秦飞,安彤,王瑞铭,赵静毅. 退火工艺对硅通孔填充Cu微结构演化与胀出行为的影响*[J]. 金属学报, 2016, 52(2): 202-208.