Please wait a minute...
金属学报  2017, Vol. 53 Issue (8): 1001-1010    DOI: 10.11900/0412.1961.2016.00475
  本期目录 | 过刊浏览 |
退火温度对ARB-Cu室温拉伸断裂行为的影响
李敏, 刘静, 姜庆伟()
昆明理工大学材料科学与工程学院 昆明 650093
Effect of Annealing Temperature on Tensile Fracture Behavior of ARB-Cu at Room Temperature
Min LI, Jing LIU, Qingwei JIANG()
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
引用本文:

李敏, 刘静, 姜庆伟. 退火温度对ARB-Cu室温拉伸断裂行为的影响[J]. 金属学报, 2017, 53(8): 1001-1010.
Min LI, Jing LIU, Qingwei JIANG. Effect of Annealing Temperature on Tensile Fracture Behavior of ARB-Cu at Room Temperature[J]. Acta Metall Sin, 2017, 53(8): 1001-1010.

全文: PDF(1504 KB)   HTML
摘要: 

利用TEM观察累积叠轧法(ARB)制备的超细晶Cu的微观结构,在IBTC-5000单轴疲劳试验机上对制备态及不同温度退火态的ARB-Cu进行单向静态拉伸实验,通过SEM观察力学测试后试样的断口形貌。结果表明:在实验温度范围内,退火处理均使ARB-Cu的屈服强度和抗拉强度下降,当退火温度低于再结晶温度时,ARB-Cu的屈服强度和抗拉强度均随退火温度的升高而升高;当退火温度高于再结晶温度时,其强度迅速下降。当退火温度为200 ℃时,ARB-Cu的屈服强度和抗拉强度达到退火态最大值。随退火温度的升高,ARB-Cu的晶粒尺寸略微增大,晶粒分布逐渐由制备态的单峰分布转变为双峰分布,断口形貌显示出塑性逐渐增加的趋势。退火处理有助于ARB材料焊合界面结合强度的提高,退火温度越高,焊合界面结合性能越好。焊合界面经历的叠轧道次越多,其结合效率越高,其理论计算公式为E=(1-0.5n)×100%。

关键词 超细晶累积叠轧退火微观结构断口形貌    
Abstract

Annealing treatment is an effective method for improving structural stability of ultrafine-grained (UFG) or nanostructured (NS) materials produced by severe plastic deformation (SPD). This work focuses on the effect of annealing temperature on the tensile fracture behavior of UFG Cu produced by accumulative roll bonding (ARB). Annealing treatment was performed for 10 min at temperatures of 100, 150, 200 and 250 ℃. The microstructure of annealed and ARBed UFG Cu was observed by TEM. The uniaxial static tensile test was performed by utilizing fatigue testing machine (IBTC-5000) with an initial strain rate of 10-2 s-1. Fracture morphology was observed by SEM. The results suggested that yield strength and tensile strength decreased after annealing treatment compared with initial sample. However, yield strength and tensile strength of ARB-Cu increased with increasing annealing temperature below recrystallization temperature. When annealing temperature is higher than recrystallization temperature, the strength decreased rapidly. With increasing the annealing temperature, the grain size of ARB-Cu increases and gradually tends to bimodal distribution, and the fracture morphology shows a trend of increasing plasticity gradually. The annealing treatment is helpful to bonding efficiency E. The relationship between the theoretical bonding efficiency E and the ARB passes n can be expressed in E=(1-0.5n)×100%.

Key wordsultrafine grain    accumulative rolling bonding    annealing    microstructure    fracture morphology
收稿日期: 2016-10-25     
ZTFLH:  TG146  
基金资助:国家自然科学基金项目No.51201077
作者简介:

作者简介 李 敏,女,1992年生,博士生

图1  制备态和不同温度退火态累积叠轧(ARB)-Cu的TEM像
图2  退火温度对ARB-Cu晶粒尺寸分布的影响
图3  退火温度对ARB-Cu力学性能的影响
图4  制备态及不同温度退火态ARB-Cu单向拉伸后的断口侧视形貌图
图5  ARB-Cu的剖面SEM像
图6  制备态及不同温度退火态ARB-Cu单向拉伸后的断口形貌
图7  ARB工艺焊合界面结合示意图
i n E / %
1 6 98.4
2 5 96.9
3 4 93.8
4 3 87.5
5 2 75.0
6 1 50.0
表1  ARB叠轧焊合界面结合效率(E)与经历轧制道次(n)
图8  ARB-Cu焊合界面结合强度指标随该界面所经历轧制道次及退火温度的变化
[1] Murashkin M Y, Sabirov I, Medvedev A E, et al.Mechanical and electrical properties of an ultrafine grained Al-8.5 wt. % RE (RE=5.4 wt.% Ce, 3.1 wt.% La) alloy processed by severe plastic deformation[J]. Mater. Des., 2016, 90: 433
[2] Valiev R Z, Estrin Y, Horita Z, et al.Producing bulk ultrafine-grained materials by severe plastic deformation[J]. JOM, 2006, 58(4): 33
[3] Khatibi G, Horky J, Weiss B, et al.High cycle fatigue behaviour of copper deformed by high pressure torsion[J]. Int. J. Fatigue, 2010, 32: 269
[4] Zhan M Y, Li C M, Zhang W W.An EBSD study on the microstructure and texture evolution of AZ31 magnesium alloy during accumulative roll-bonding[J]. Acta Metall. Sin., 2012, 48: 709(詹美燕, 李春明, 张卫文. 累积叠轧焊AZ31镁合金微观组织和织构演变的EBSD研究[J]. 金属学报, 2012, 48: 709)
[5] Tao N R, Lu K.Preparation techniques for nano-structured metallic materials via plastic deformation[J]. Acta Metall. Sin., 2014, 50: 141(陶乃镕, 卢柯. 纳米结构金属材料的塑性变形制备技术[J]. 金属学报, 2014, 50: 141)
[6] Renk O, Hohenwarter A, Eder K, et al.Increasing the strength of nanocrystalline steels by annealing: Is segregation necessary?[J]. Scr. Mater., 2015, 95: 27
[7] Valiev R Z, Sergueeva A V, Mukherjee A K.The effect of annealing on tensile deformation behavior of nanostructured SPD titanium[J]. Scr. Mater., 2003, 49: 669
[8] Jiang Q W, Li X W.Effect of pre-annealing treatment on the compressive deformation and damage behavior of ultrafine-grained copper[J]. Mater. Sci. Eng., 2012, A546: 59
[9] Huang X X, Hansen N, Tsuji N.Hardening by annealing and softening by deformation in nanostructured metals[J]. Science, 2006, 312: 249
[10] Qin X Y, Lee J S, Lee C S.Microstructures and mechanical behavior of bulk nanocrystalline γ-Ni-Fe produced by a mechanochemical method[J]. J Mater. Res., 2002, 17: 991
[11] Kamikawa N, Huang X X, Tsuji N, et al.Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed[J]. Acta Mater., 2009, 57: 4198
[12] Vinogradov A, Kaneko Y, Kitagawa K, et al.Cyclic response of ultrafine-grained copper at constant plastic strain amplitude[J]. Scr. Mater., 1997, 36: 1345
[13] Han W Z, Wu S D, Li S X, et al. Intermediate annealing of pure copper during cyclic equal channel angular pressing [J]. Mater. Sci. Eng., 2008, A483-484: 430
[14] Hongo T, Edalati K, Arita M, et al.Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion[J]. Acta Mater., 2015, 92: 46
[15] Pal-Val P, Pal-Val L, Natsik V, et al.Giant young's modulus variations in ultrafine-grained copper caused by texture changes at post-SPD heat treatment[J]. Arch. Metall. Mater., 2015, 60: 3073
[16] Ren J W, Shan A D.Strengthening and stress drop of ultrafine grain aluminum after annealing[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 2139
[17] Zhao F X, Xu X C, Liu H Q, et al.Effect of annealing treatment on the microstructure and mechanical properties of ultrafine-grained aluminum[J]. Mater. Des., 2014, 53: 262
[18] Tsuji N, Ito Y, Saito Y, et al.Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing[J]. Scr. Mater., 2002, 47: 893
[19] Wang J L, Shi Q N, Qian T C, et al.Recrystallized microstructural evolution of UFG copper prepared by asymmetrical accumulative rolling-bonding process[J]. Trans. Nonferrous Met. Soc., 2010, 20: 559
[20] Dai X Z, Liu J, Han J T.Study on the microstructure and mechanical properties of ultra-fine grain copper strip[J]. Shandong Metall., 2007, 28(5): 40(代秀芝, 刘靖, 韩静涛. 超细晶铜带材的组织及力学性能研究[J]. 山东冶金, 2007, 28(5): 40)
[21] Zhou L, Shi Q N, Wang J L, et al.Effects of recrystallization annealing temperature and time on upon twins in pure copper by AARB[J]. Hot Work. Technol., 2012, 41(13): 29(周蕾, 史庆南, 王军丽等. 异步累积叠轧纯铜再结晶温度、时间对孪晶的影响[J]. 热加工工艺, 2012, 41(13): 29)
[22] Wang J L, Shi Q N, Wang X Q.Study on microstructure and orientation evolution of ultra-fine grained copper prepared by asymmetrical accumulative rolling bonding (AARB) during annealing[J]. J. Mater. Eng., 2008, (11): 5(王军丽, 史庆南, 王效琪. 异步累积叠轧技术制备超细晶铜材退火过程组织及取向研究[J]. 材料工程, 2008, (11): 5)
[23] Xie Z L, Wu X L, Xie J J, et al.Microstructures and compression properties of copper specimens deformed by high-pressure torsion[J]. Acta Metall. Sin., 2008, 44: 803(谢子令, 武晓雷, 谢季佳等. 高压扭转铜试样的微观组织与压缩性能[J]. 金属学报, 2008, 44: 803)
[24] Fattah-Alhosseini A, Imantalab O, Mazaheri Y, et al.Microstructural evolution, mechanical properties, and strain hardening behavior of ultrafine grained commercial pure copper during the accumulative roll bonding process[J]. Mater. Sci. Eng., 2016, A650: 8
[25] Azushima A, Kopp R, Korhonen A, et al.Severe plastic deformation (SPD) processes for metals[J]. CIRP Ann. Manuf. Technol., 2008, 57: 716
[1] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[2] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[3] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[4] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[5] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[6] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[7] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[8] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[9] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[10] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[11] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[12] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[13] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[14] 马敏静, 屈银虎, 王哲, 王军, 杜丹. Ag-CuO触点材料侵蚀过程的演化动力学及力学性能[J]. 金属学报, 2022, 58(10): 1305-1315.
[15] 陈胜虎, 戎利建. 超细晶铁素体-马氏体钢的高温氧化成膜特性及其对Pb-Bi腐蚀行为的影响[J]. 金属学报, 2021, 57(8): 989-999.