Please wait a minute...
金属学报  2017, Vol. 53 Issue (8): 918-926    DOI: 10.11900/0412.1961.2016.00472
  本期目录 | 过刊浏览 |
AlSi10Mg的激光选区熔化成形研究
张文奇, 朱海红(), 胡志恒, 曾晓雁
华中科技大学武汉光电国家实验室 武汉 430074
Study on the Selective Laser Melting of AlSi10Mg
Wenqi ZHANG, Haihong ZHU(), Zhiheng HU, Xiaoyan ZENG
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
引用本文:

张文奇, 朱海红, 胡志恒, 曾晓雁. AlSi10Mg的激光选区熔化成形研究[J]. 金属学报, 2017, 53(8): 918-926.
Wenqi ZHANG, Haihong ZHU, Zhiheng HU, Xiaoyan ZENG. Study on the Selective Laser Melting of AlSi10Mg[J]. Acta Metall Sin, 2017, 53(8): 918-926.

全文: PDF(1488 KB)   HTML
摘要: 

利用激光选区熔化(selective laser melting, SLM)成形技术对AlSi10Mg铸造铝合金的成形进行了工艺研究,获得了致密的成形,并对其沉积态和热处理态试样进行了静态拉伸性能测试和显微组织分析。结果表明:对于AlSi10Mg, 其SLM沉积态的常温拉伸强度远高于铸件标准,延伸率与铸态相当;退火工艺对SLM试样的组织及力学性能有着重要的影响,随着退火温度的提高,试样微观组织发生改变,在300 ℃、2 h退火工艺下,原本均匀分布的颗粒状Si聚集长大为针状,使得试样的强度下降,延伸率升高。抗拉强度由沉积态的507~518 MPa下降到378~406 MPa,延伸率由沉积态的3.0%~3.5%增加到6.5%~9.0%。

关键词 AlSi10Mg激光选区熔化力学性能热处理    
Abstract

The growing interest for a wide range of usable Al alloy parts with complex shape in industrial field makes selective laser melting (SLM) stand out as a new technology for rapid prototyping manufacturing. The objective of this work is to investigate AlSi10Mg cast aluminum alloy manufacturing by SLM. The investigation involved the influence of process parameters on the relative density and the influence of heat treatment on the microstructure and mechanical properties. High density and performance were achieved. The results show that the tensile strength of the SLMed AlSi10Mg is much higher than that of press wrought AlSi10Mg, but the elongation is as almost same as that of the press wrought AlSi10Mg. The heat treatment has a significant effect on the mechanical properties and microstructure of SLMed AlSi10Mg parts. The mechanical properties changes with the annealing temperature. Compared with the mechanical properties without annealing process, the tensile strength decreases from 507~518 MPa to 378~406 MPa and the elongation increases from 3.0%~3.5% to 6.5%~9.0% when the annealing temperature is 300 ℃ and the soap time is 2 h because of the changes in the morphology and distribution of the Si.

Key wordsAlSi10Mg    selective laser melting    mechanical property    heat treatment
收稿日期: 2016-10-24     
ZTFLH:  TG665  
基金资助:国家自然科学基金项目No.61475056, 中央高校基本科研业务费专项资金项目No.2016XYZD00, 湖北省自然科学基金重点项目No.2014CFA049, 以及武汉光电国家实验室主任基金项目
作者简介:

作者简介 张文奇,男,1991年生,硕士

图1  实验装置示意图
图2  扫描速度对激光选区熔化(SLM)成形AlSi10Mg试样的相对密度的影响
图3  不同扫描速度下制备的AlSi10Mg试样的OM像
图4  扫描间距对SLM成形AlSi10Mg试样的相对密度的影响
图5  层厚对SLM成形AlSi10Mg试样的相对密度的影响
图6  SLM成形AlSi10Mg合金沉积态横截面SEM像
图7  SLM成形AlSi10Mg合金的EDS面扫描结果
图8  沉积态和热处理后AlSi10Mg的微观组织
图9  不同条件下的AlSi10Mg试样的XRD谱
图10  沉积态AlSi10Mg试样的应力-应变曲线
图11  SLM成形AlSi10Mg试样显微硬度随扫描速度的变化
图12  沉积态及热处理态的常温力学性能
图13  不同热处理工艺下的SLM成形AlSi10Mg试样显微硬度
[1] Zhang H, Zhu H H, Qi T, et al.Selective laser melting of high strength Al-Cu-Mg alloys: Processing, microstructure and mechanical properties[J]. Mater. Sci. Eng., 2016, A656: 47
[2] Chen R, Xu Q Y, Liu B C.Modelling investigation of precipitation kinetics and strengthening for needle/rod-shaped precipitates in Al-Mg-Si alloys[J]. Acta Metall. Sin., 2016, 52: 987(陈瑞, 许庆彦, 柳百成. Al-Mg-Si合金中针棒状析出相时效析出动力学及强化模拟研究[J]. 金属学报, 2016, 52: 987)
[3] Heinz A, Haszler A, Keidel C, et al.Recent development in aluminium alloys for aerospace applications[J]. Mater. Sci. Eng., 2000, A280: 102
[4] Calignano F.Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting[J]. Mater. Des., 2014, 64: 203
[5] Kanagarajah P, Brenne F, Niendorf T, et al.Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading[J]. Mater. Sci. Eng., 2013, A588: 188
[6] Yadroitsev I, Smurov I.Selective laser melting technology: From the single laser melted track stability to 3D parts of complex shape[J]. Phys. Procedia, 2010; 5: 551
[7] Hu Z H, Zhu H H, Zhang H, et al.Experimental investigation on selective laser melting of 17-4PH stainless steel[J]. Opt. Laser Technol., 2017, 87: 17
[8] Zhang D Y.Model manufacturing process from aluminum alloys using selective laser melting[J]. Chin. J. Lasers, 2007, 34: 1700(张冬云. 采用区域选择激光熔化法制造铝合金模型[J]. 中国激光, 2007, 34: 1700)
[9] Dai D H, Gu D D.Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder[J]. Int. J. Mach. Tools Manuf., 2015, 88: 95
[10] Wei K W, Wang Z M, Zeng X Y.Influence of element vaporization on formability, composition, microstructure, and mechanical performance of the selective laser melted Mg-Zn-Zr components[J]. Mater. Lett., 2015, 156: 187
[11] Aboulkhair N T, Maskery I, Tuck C, et al.On the formation of AlSi10Mg single tracks and layers in selective laser melting: Microstructure and nano-mechanical properties[J]. J. Mater. Process. Technol., 2016, 230: 88
[12] Buchbinder D, Meiners W, Pirch N, et al.Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting[J]. J. Laser Appl., 2014, 26: 012004
[13] Li Y L, Gu D D.Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder[J]. Mater. Des., 2014, 63: 856
[14] Kempen K, Thijs L, Yasa E, et al.Process optimization and microstructural analysis for selective laser melting of AlSi10Mg [A]. Solid Freeform Fabrication: An Additive Manufacturing Conference[C]. Austin: University of Texas, 2011: 484
[15] Louvis E, Fox P, Sutcliffe C J.Selective laser melting of aluminium components[J]. J. Mater. Process. Technol., 2011, 211: 275
[16] Thijs L, Kempen K, Kruth J P, et al.Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Mater., 2013, 61: 1809
[17] Lam L P, Zhang D Q, Liu Z H, et al.Phase analysis and microstructure characterisation of AlSi10Mg parts produced by selective laser melting[J]. Virtual Phys. Prototyp., 2015, 10: 207
[18] Brandl E, Heckenberger U, Holzinger V, et al.Additive manufactured AlSi10Mg samples using selective laser melting (SLM): Microstructure, high cycle fatigue, and fracture behavior[J]. Mater. Des., 2012, 34: 159
[19] Kempen K, Thijs L J, Van Humbeeck J, et al.Mechanical properties of AlSi10Mg produced by selective laser melting[J]. Phys. Procedia, 2012, 39: 439
[20] Aboulkhair N T, Tuck C, Ashcroft I, et al.On the precipitation hardening of selective laser melted AlSi10Mg[J]. Metall. Mater. Trans., 2015, 46A: 3337
[21] Zhang H, Zhu H, Nie X, et al.Effect of zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy[J]. Scr. Mater., 2017, 134: 6
[22] Guan K, Wang Z M, Gao M, et al.Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel[J]. Mater. Des., 2013, 50: 581
[23] Read N, Wang W, Essa K, et al.Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development[J]. Mater. Des., 2015, 65: 417
[24] Rosenthal I, Stern A, Frage N.Microstructure and mechanical properties of alsi10mg parts produced by the laser beam additive manufacturing (AM) technology[J]. Metall. Microstruct. Anal., 2014, 3: 448
[25] Li W, Li S, Liu J, et al.Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism[J]. Mater. Sci. Eng., 2016, A663: 116
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.