Please wait a minute...
金属学报  2017, Vol. 53 Issue (7): 817-823    DOI: 10.11900/0412.1961.2016.00322
  本期目录 | 过刊浏览 |
U65Fe30Al5非晶合金的纳米压痕蠕变行为研究
徐宏扬,柯海波,黄火根,张培,张鹏国,刘天伟()
中国工程物理研究院材料研究所 江油 621907
Nanoindentation Creep Behavior of U65Fe30Al5 Amorphous Alloy
Hongyang XU,Haibo KE,Huogen HUANG,Pei ZHANG,Pengguo ZHANG,Tianwei LIU()
Institute of Materials, China Academy of Engineering Physics, Jiangyou 621907, China
全文: PDF(2482 KB)   HTML
摘要: 

在室温下利用纳米压痕测试技术研究了峰值载荷和加载速率对U65Fe30Al5新型非晶合金蠕变行为的影响规律。结果表明,随着峰值载荷和加载速率的增加,在相同蠕变时间内,蠕变位移呈增大趋势,但当加载速率高于特定阈值时,蠕变位移不再增大。通过蠕变经验公式拟合发现,蠕变过程的应力指数随峰值载荷的增加不断变大,但随加载速率的增加先减小后基本恒定。与常规晶态合金相比,U65Fe30Al5非晶合金具有更大的应力指数,这反映出后者内部结构中富含自由体积。

关键词 非晶合金铀合金纳米压痕蠕变行为应力指数    
Abstract

Uranium is a valuable nuclear fuel material, but this application is unavoidably handicapped by the easy creep behavior of the metal caused by the combination of stress and irradiation in nuclear reactor. Uranium-based amorphous alloys, as a kind of potential new materials in the nuclear industry, would be challenged by this issue when used in such situation. However, creep properties of these materials have not been reported in the previous studies. In order to preliminarily investigate the creep phenomenon derived from stress function, this work is performed to study the ambient creep behavior of a new amorphous alloy U65Fe30Al5. This alloy was tested by using a nanoindentation technique under different peak loads and loading rates. The results indicate that the creep displacement gradually increases with either the peak load or the loading rate in equal creeping time, but this tendency vanishes when exceeding a critical loading rate. The fitting based on an empirical creep equation reveals that the stress exponent of the alloy ascends when raising the peak load, and firstly declines with the loading rate and then keeps constant above the critical rate. Compared with conventional crystalline alloys, the U-Co-Al alloy shows a larger stress exponent, reflecting the possible existence of rich free volume in the amorphous alloy.

Key wordsamorphous alloy    uranium alloy    nanoindentation    creep    stress exponent
收稿日期: 2016-07-21      出版日期: 2017-04-25
基金资助:国家自然科学基金项目No.51501169,国防基础科研计划项目No.B1520133007,中国工程物理研究院科技发展基金项目Nos.2013A0301015和2014B0302047

引用本文:

徐宏扬,柯海波,黄火根,张培,张鹏国,刘天伟. U65Fe30Al5非晶合金的纳米压痕蠕变行为研究[J]. 金属学报, 2017, 53(7): 817-823.
Hongyang XU,Haibo KE,Huogen HUANG,Pei ZHANG,Pengguo ZHANG,Tianwei LIU. Nanoindentation Creep Behavior of U65Fe30Al5 Amorphous Alloy. Acta Metall, 2017, 53(7): 817-823.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00322      或      http://www.ams.org.cn/CN/Y2017/V53/I7/817

图1  纳米压痕测试过程的加载函数与理想特征曲线
图2  U65Fe30Al5非晶合金的XRD谱
图3  U65Fe30Al5非晶合金在不同载荷条件下蠕变30 s的载荷-深度曲线和蠕变位移-时间曲线(起始蠕变位移和时间进行归零化处理)
图4  U65Fe30Al5非晶合金在不同加载速率下蠕变30 s的载荷-深度曲线(平移处理后)和蠕变位移-时间曲线
图5  U65Fe30Al5非晶合金的蠕变位移随载荷与加载速率的变化趋势
图6  U65Fe30Al5非晶合金蠕变过程中的实验与拟合曲线(式(3))和应力指数变化图
图7  U65Fe30Al5非晶合金稳态蠕变过程中的应力指数-载荷曲线与应力指数-加载速率曲线
Composition Material type Peak load mN Creep time / s Loading rate mNs-1 Stress exponent
U65Fe30Al5 Amorphous 100 30 20 89
Ti40Zr25Ni3Cu12Be20[18] Amorphous 100 2000 0.1 5
Ta film[24] Amorphous 8 40 5 78.7
Fused quartz[20] Glass 69.4 95 - 85
B6O[26] Polycrystalline 100 15 200 0.14
表1  不同材料纳米压痕蠕变得到的应力指数
[1] Mu X Y.Creep Mechanics [M]. Xi'an: Xi'an Jiaotong University Press, 1990: 67
[1] (穆霞英. 蠕变力学[M]. 西安: 西安交通大学出版社, 1990: 67)
[2] ?adek J.Creep in Metallic Materials[M]. Amsterdam: Elsevier Science Ltd., 1988: 85
[3] Nabarro F R N, de Villiers H L. The Physics of Creep[M]. London: Taylor and Francis, 1995: 113
[4] Li W B, Henshall J L, Hooper R M, et al.The mechanisms of indentation creep[J]. Acta Metall. Mater., 1991, 39: 3099
[5] Ranaivomanana N, Multon S, Turatsinze A.Basic creep of concrete under compression, tension and bending[J]. Constr. Build. Mater., 2013, 38: 173
[6] Mahmudi R, Roumina R, Raeisinia B.Nvestigation of stress exponent in the power-law creep of Pb-Sb alloys[J]. Mater. Sci. Eng., 2004, A382: 15
[7] Gao Y, Wen S P, Wang X H, et al.Investigation on indentation creep by depth sensing indentation[J]. J. Aeronaut. Mater., 2006, 26(3): 148
[7] (高阳, 文胜平, 王晓慧等. 纳米压痕法测试压痕蠕变的应用研究[J]. 航空材料学报, 2006, 26(3): 148)
[8] Elmustafa A A, Stone D S.Strain rate sensitivity in nanoindentation creep of hard materials[J]. J. Mater. Res., 2007, 22: 2912
[9] Lucas B N, Oliver W C.Indentation power-law creep of high-purity indium[J]. Metall. Mater. Trans., 1999, 30A: 601
[10] Wang W H.The nature and properties of amorphous matter[J]. Prog. Phys., 2013, 33: 177
[10] (汪卫华. 非晶态物质的本质和特性[J]. 物理学进展, 2013, 33: 177)
[11] Huang H G, Wang Y M, Chen L, et al.Study on formation and corrosion resistance of amorphous alloy in U-Co system[J]. Acta Metall. Sin., 2015, 51: 623
[11] (黄火根, 王英敏, 陈亮等. U-Co系非晶合金的形成与耐蚀性研究[J]. 金属学报, 2015, 51: 623)
[12] Huang H G, Ke H B, Wang Y M, et al.Stable U-based metallic glasses[J]. J. Alloys Compd., 2016, 684: 75
[13] Bleiberg M L, Jones L J, Lustman B.Phase changes in pile-irradiated uranium-base alloys[J]. J. Appl. Phys., 1956, 27: 1270
[14] Elliott R O, Giessen B C.On the formation of metallic glasses based on U, Np or Pu[J]. Acta Metall., 1982, 30: 785
[15] Huang H G, Ke H B, Zhang P, et al.Effect of minor alloying on the glass formation of U-based alloys[J]. J. Alloys Compd., 2016, 688: 599
[16] Yang Y, Zeng J F, Ye J C, et al.Structural inhomogeneity and anelastic deformation in metallic glasses revealed by spherical nanoindentation[J]. Appl. Phys. Lett., 2010, 97: 261905
[17] Ma Y, Peng G J, Feng Y H, et al.Nanoindentation investigation on the creep mechanism in metallic glassy films[J]. Mater. Sci. Eng., 2016, A651: 548
[18] Huang Y J, Chiu Y L, Shen J, et al.Indentation creep of a Ti-based metallic glass[J]. J. Mater. Res., 2009, 24: 993
[19] Pang J J, Tan M J, Liew K M, et al.Nanoindentation study of size effect and loading rate effect on mechanical properties of a thin film metallic glass Cu49.3Zr50.7 [J]. Physics, 2012, 407B: 340
[20] Li H, Ngan A H W. Size effects of nanoindentation creep[J]. J. Mater. Res., 2004, 19: 513
[21] Schuh C A, Lund A C, Nieh T G.New regime of homogeneous flow in the deformation map of metallic glasses: elevated temperature nanoindentation experiments and mechanistic modeling[J]. Acta Mater., 2004, 52: 5879
[22] Spaepen F.A microscopic mechanism for steady state inhomogeneous flow in metallic glasses[J]. Acta Metall., 1977, 25: 407
[23] Argon A S.Plastic deformation in metallic glasses[J]. Acta Metall., 1979, 27: 47
[24] Cao Z H, Li P Y, Meng X K.Nanoindentation creep behaviors of amorphous, tetragonal, and bcc Ta films[J]. Mater. Sci. Eng., 2009, A516: 253
[25] Zhang H W, Jing X N, Subhash G, et al.Investigation of shear band evolution in amorphous alloys beneath a Vickers indentation[J]. Acta Mater., 2005, 53: 3849
[26] Machaka R, Derry T E, Sigalas L.Room temperature nanoindentation creep of hot-pressed B6O[J]. Mater. Sci. Eng., 2014, A607: 521
[1] 张媛媛,林鑫,魏雷,任永明. 激光立体成形退火态Zr55Cu30Al10Ni5粉末的晶化行为[J]. 金属学报, 2017, 53(7): 824-832.
[2] 郑玉峰,吴远浩. 处在变革中的医用金属材料[J]. 金属学报, 2017, 53(3): 257-297.
[3] 耿遥祥,张志杰,王英敏,羌建兵,董闯,汪海斌,特古斯. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联[J]. 金属学报, 2017, 53(3): 369-375.
[4] 黄火根,徐宏扬,张鹏国,王英敏,柯海波,张培,刘天伟. 具有反常非晶形成能力的U-Cr二元合金[J]. 金属学报, 2017, 53(2): 233-238.
[5] 刘积厚,赵洪运,李卓霖,宋晓国,董红杰,赵一璇,冯吉才. Cu/Sn/Cu超声-TLP接头的显微组织与力学性能[J]. 金属学报, 2017, 53(2): 227-232.
[6] 彭超, 李媛, 邓永和, 彭平. 近共晶成分Ni-P非晶合金微结构特征的原子模拟分析[J]. 金属学报, 2017, 53(12): 1659-1668.
[7] 杨彪,郑百林,胡兴健,贺鹏飞,岳珠峰. 空洞对镍基单晶合金纳米压痕过程的影响*[J]. 金属学报, 2016, 52(2): 129-134.
[8] 耿遥祥,王英敏,羌建兵,董闯,汪海斌,特古斯. Fe-B-Si-Nb块体非晶合金的成分设计与优化*[J]. 金属学报, 2016, 52(11): 1459-1466.
[9] 王中原,何杰,杨柏俊,江鸿翔,赵九洲,王同敏,郝红日. Zr-Ce-Co-Cu难混溶合金的液-液相分离和双非晶相形成*[J]. 金属学报, 2016, 52(11): 1379-1387.
[10] 徐洋, 孙明雪, 周砚磊, 刘振宇. (Nb, Ti)C在轧后卷取中的析出及对铁素体相微观力学特征的影响[J]. 金属学报, 2015, 51(1): 31-39.
[11] 马广财, 付华萌, 王峥, 许庆亮, 张海峰. 304不锈钢毛细管/Zr53.5Cu26.5Ni5Al12Ag3块体非晶合金复合材料的制备与性能研究[J]. 金属学报, 2014, 50(9): 1087-1094.
[12] 秦飞, 项敏, 武伟. 纳米压痕法确定TSV-Cu的应力-应变关系*[J]. 金属学报, 2014, 50(6): 722-726.
[13] 杨高林,林鑫,胡桥,宋梦华,汪志太,黄卫东. 试样温度对激光重熔Zr55Cu30Al10Ni5块体非晶合金晶化的影响[J]. 金属学报, 2013, 49(8): 925-931.
[14] 杨高林,林鑫,胡桥,张莹,汪志太,李鹏,黄卫东. Zr55Cu33Al10Ni5块体非晶合金退火处理后脉冲激重熔晶化行为[J]. 金属学报, 2013, 49(6): 649-657.
[15] 马国峰,贺春林, 李正坤,张波,李宏,张海峰,胡壮麒. Ti或Al添加对Zr50Cu50非晶合金W润湿行为和界面特性的影响[J]. 金属学报, 2013, 29(4): 495-500.