Please wait a minute...
金属学报  2016, Vol. 52 Issue (1): 100-104    DOI: 10.11900/0412.1961.2015.00256
  本期目录 | 过刊浏览 |
合金元素Cu对金属Zr吸氘动力学机制的影响*
杨云,宋西平()
北京科技大学新金属材料国家重点实验室, 北京 100083
INFLUENCE OF ALLOY ELEMENT Cu ON KINETIC MECHANISMS OF DEUTERIUM ABSORPTION IN ZIRCONIUM
Yun YANG,Xiping SONG()
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(3491 KB)   HTML
摘要: 

通过实验测试及动力学机制方程拟合, 研究了放电等离子烧结Zr-xCu (x=0, 5%, 10%, 质量分数)合金吸氘动力学机制. 结果表明, 随着合金元素Cu的加入, 相结构由纯Zr的a-Zr单相转变为Zr-Cu合金的a-Zr和Zr2Cu双相. 相应地, 其吸氘达到饱和的时间逐渐延长, 由纯Zr的20 min增加到Zr-5%Cu的80 min和Zr-10%Cu的130 min, 吸氘后的纯Zr相结构为氘化物e, 而Zr-Cu合金相结构为e相、Zr2Cu和Zr7Cu10. 动力学机制方程拟合结果显示, 纯Zr吸氘过程受二维扩散机制控制, 而Zr-Cu合金吸氘过程受化学反应机制控制. Cu的加入改变了其吸氘机制, 从而降低了吸氘速率.

关键词 ZrCu吸氘动力学    
Abstract

With increasing demand for energy, nuclear fusion has attracted more and more attention. In fusion process, the most promising of fusion reactions is the fusion of deuterium and tritium. Thus, deuterium absorption has become a key issue. At present, the extensively used materials for storage and supply of deuterium are uranium beds. However, upon hydrogenation, uranium is easily disintegrated into fine powder, which causes many undesirable problems. It has been found that zirconium alloys can take as much deuterium atoms as that of uranium alloys but with a lower density and price, thus becoming a candidate material for deuterium carrier. However, zirconium alloys usually occur to crack after deuterium absorption, which badly restricts their application as a deuterium carrier. In order to minimize the cracking, Cu is chosen as an alloying element, expecting to minimize the cracking. In this work, the kinetic mechanisms of deuterium absorption in Zr-xCu (x=0, 5%, 10%, mass fraction) alloys were investigated based on experiments and kinetic function calculations. The results show that with the increase of Cu content, the microstructure transforms from the primary single a-Zr phase of the pure Zr to the a-Zr and Zr2Cu duplex phases of the Zr-5%Cu and Zr-10%Cu alloys. Correspondingly, the equilibrium time of deuterium absorption increases significantly from 20 min for the pure Zr to 80 min for the Zr-5%Cu alloy and to 130 min for the Zr-10%Cu alloy. After deuterium absorption, the phase of pure Zr is e deuteride while the phases of Zr-5%Cu and Zr-10%Cu are e deuteride, Zr2Cu and Zr7Cu10. The kinetic mechanisms of deuterium absorption in these alloys are found to be controlled by a 2-dimensional diffusion mechanism in the pure Zr, and by a chemical reaction mechanism in the Zr-5%Cu and Zr-10%Cu alloys. The addition of Cu changes the kinetic mechanisms of the Zr-xCu alloys, resulting in slowing down deuterium absorption rate. It is attributed that during deuterium absorption of Zr-Cu alloys, Zr2Cu also absorbs deuterium and forms intermediate phase, such as Zr2CuHx. Then the intermediate phase will discompose into Zr7Cu10 and ε deuteride.

Key wordsZr    Cu    deuterium absorption    kinetics
收稿日期: 2015-05-12      出版日期: 2015-11-10
基金资助:国家自然科学基金项目21171018 和51271021 资助

引用本文:

杨云,宋西平. 合金元素Cu对金属Zr吸氘动力学机制的影响*[J]. 金属学报, 2016, 52(1): 100-104.
Yun YANG,Xiping SONG. INFLUENCE OF ALLOY ELEMENT Cu ON KINETIC MECHANISMS OF DEUTERIUM ABSORPTION IN ZIRCONIUM. Acta Metall, 2016, 52(1): 100-104.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00256      或      http://www.ams.org.cn/CN/Y2016/V52/I1/100

图1  Zr-xCu合金的BSE像
图2  Zr-xCu 合金吸氘前后的XRD谱
图3  Zr-xCu 合金的吸氘动力学曲线及氘化物体积转化分数随时间的变化
图4  Zr-xCu合金吸氘过程中在二维扩散和化学反应机制方程拟合下的曲线
[1] Taylor N, Cortes P. Fusion Eng Des, 2014; 89: 1995
[2] Lupelli I, Murari A, Gaudio P, Gelfusa M, Mazon D, Vega J. Fusion Eng Des, 2013; 88: 738
[3] Hong B G. Fusion Eng Des, 2014; 89: 2493
[4] Pampin R, Davis A, Izquierdo J, Leichtle D, Loughlin M J, Sanz J, Turner A, Villari R, Wilson P P H. Fusion Eng Des, 2013; 88: 454
[5] Kanouff M P, Gharagozloo P E, Salloum M, Shugard A D. Chem Eng Sci, 2013; 91: 212
[6] Shugard A D, Buffleben G M, Johnson T A, Robinson D B. J Nucl Mater, 2014; 447: 304
[7] Bhattacharyya R, Mohan S. Renew Sust Energy Rev, 2015; 41: 872
[8] Ablitzer C, Le Guyadec F, Raynal J, Génin X, Duhart-Barone A. J Nucl Mater, 2013; 432: 135
[9] Totemeier T C. J Nucl Mater, 2000; 278: 301
[10] Le Guyadec F, Génin X, Bayle J P, Dugne O, Duhart-Barone A, Ablitzer C. J Nucl Mater, 2010; 396: 294
[11] Jat R A, Sawant S G, Rajan M B, Dhanuskar J R, Kaity S, Parid S C. J Nucl Mater, 2013; 443: 316
[12] Hu X X, Terrani K A, Wirth B D. J Nucl Mater, 2014; 448: 87
[13] Glazoffa M V, Tokuhiro A, Rashkeev S N, Sabharwalla P. J Nucl Mater, 2014; 444: 65
[14] Zheng J, Zhou X S, Mao L, Zhang H J, Liang J H, Sheng L S, Peng S. Int J Hydrogen Energy Mater, 2015; 40: 4597
[15] Lanzania L, Ruch M. J Nucl Mater, 2004; 324: 165
[16] Wongsawaeng D, Jaiyen S. J Nucl Mater, 2010; 403: 19
[17] Terrani K A, Balooch M, Wongsawaeng D, Jaiyen S, Olander D R. J Nucl Mater, 2010; 397: 61
[18] Zhao C, Song X P, Yang Y, Zhang B. Int J Hydrogen Energy Mater, 2013; 38: 10903
[19] Dou N N. Master Thesis, University of Science and Technology Beijing, 2014
[19] (窦娜娜. 北京科技大学硕士学位论文, 2014)
[20] Li Q, Chou K C, Jiang L J, Zhan F. Int J Hydrogen Energy Mater, 2004; 29: 843
[21] Dang J, Zhang G H, Chou K C, Reddy R G, He Y, Sun Y J. Int J Refract Met Hard Mater, 2013; 41: 216
[22] Li W H, Tian B H, Ma P, Wu E D. Acta Metall Sin, 2012; 48: 822
[22] (李武会, 田保红, 马 坪, 吴尔冬. 金属学报, 2012; 48: 822)
[23] Yoo H, Kim W, Ju H. Solid State Ionics, 2014; 262: 241
[24] Wang H, Prasad A K, Advani S G. Int J Hydrogen Energy Mater, 2014; 39: 11035
[25] Masanori H, Yukiko H, Kuniaki W. J Alloys Compd, 2009; 487: 489
[26] Filinchuk Y E, Yvon K. Inorg Chem, 2005; 44: 8191
[27] Kadel R, Weiss A. J Less-Common Met, 1979; 65: 89
[28] Couet A, Motta A T, Comstock R J. In: Comstock R J, Barbéris P eds., Zirconium in the Nuclear Industry: 17th International Symposium, West Conshonocken: ASTM International, 2015: 479
[1] 王帅鹏, 罗文华, 李赣, 李海波, 张广丰. La含量对Ce-La合金氢化动力学的影响[J]. 金属学报, 2018, 54(8): 1187-1192.
[2] 徐士新, 余伟, 李舒笳, 王坤, 孙齐松. 预变形温度对纳米贝氏体相变动力学及组织的影响[J]. 金属学报, 2018, 54(8): 1113-1121.
[3] 张可, 孙新军, 张明亚, 李昭东, 叶晓瑜, 朱正海, 黄贞益, 雍岐龙. Ti-V-Mo复合微合金钢中(Ti, V, Mo)C在γ /α中沉淀析出的动力学[J]. 金属学报, 2018, 54(8): 1122-1130.
[4] 赵鹏越, 郭永博, 白清顺, 张飞虎. 基于微观结构的多晶Cu纳米压痕表面缺陷研究[J]. 金属学报, 2018, 54(7): 1051-1058.
[5] 李淑波, 杜文博, 王旭东, 刘轲, 王朝辉. Zr对Mg-Gd-Er合金晶粒细化机理的影响[J]. 金属学报, 2018, 54(6): 911-917.
[6] 白银, 刘正东, 谢建新, 包汉生, 陈正宗. 预氧化处理对G115钢高温蒸气氧化行为的影响[J]. 金属学报, 2018, 54(6): 895-904.
[7] 樊丹丹, 许军锋, 钟亚男, 坚增运. 过热温度和冷却速率对过冷Ti熔体凝固过程的影响[J]. 金属学报, 2018, 54(6): 844-850.
[8] 蒋成洋, 阳颖飞, 张正义, 鲍泽斌, 朱圣龙, 王福会. 一种Zr改性双相PtAl2+(Ni, Pt)Al涂层的制备及热腐蚀行为研究[J]. 金属学报, 2018, 54(4): 581-590.
[9] 程钊, 金帅, 卢磊. 电解液温度对直流电解沉积纳米孪晶Cu微观结构的影响[J]. 金属学报, 2018, 54(3): 428-434.
[10] 刘新华, 付华栋, 何兴群, 付新彤, 江燕青, 谢建新. Cu-Al复合材料连铸直接成形数值模拟研究[J]. 金属学报, 2018, 54(3): 470-484.
[11] 陈浩, 张璁雨, 朱加宁, 杨泽南, 丁然, 张弛, 杨志刚. 奥氏体/铁素体界面迁移与元素配分的研究进展[J]. 金属学报, 2018, 54(2): 217-227.
[12] 王瑾, 余黎明, 黄远, 李会军, 刘永长. 晶体取向和He浓度对bcc-Fe裂纹扩展行为的影响[J]. 金属学报, 2018, 54(1): 47-54.
[13] 冯迪, 张新明, 陈洪美, 金云学, 王国迎. 非等温回归再时效对Al-8Zn-2Mg-2Cu合金厚板组织及性能的影响[J]. 金属学报, 2018, 54(1): 100-108.
[14] 张丽丽, 江鸿翔, 赵九洲, 李璐, 孙倩. 溶质Ti对Al-Ti-B中间合金细化Al影响的新认识:TiB2粒子的动力学行为及溶质Ti的影响[J]. 金属学报, 2017, 53(9): 1091-1100.
[15] 陈懿, 郭明星, 易龙, 袁波, 李高洁, 庄林忠, 张济山. 新型Al-Mg-Si-Cu-Zn合金板材组织、织构和性能的优化调控[J]. 金属学报, 2017, 53(8): 907-917.