Please wait a minute...
金属学报  2016, Vol. 52 Issue (1): 100-104    DOI: 10.11900/0412.1961.2015.00256
  本期目录 | 过刊浏览 |
合金元素Cu对金属Zr吸氘动力学机制的影响*
杨云,宋西平()
北京科技大学新金属材料国家重点实验室, 北京 100083
INFLUENCE OF ALLOY ELEMENT Cu ON KINETIC MECHANISMS OF DEUTERIUM ABSORPTION IN ZIRCONIUM
Yun YANG,Xiping SONG()
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(3491 KB)   HTML  
摘要: 

通过实验测试及动力学机制方程拟合, 研究了放电等离子烧结Zr-xCu (x=0, 5%, 10%, 质量分数)合金吸氘动力学机制. 结果表明, 随着合金元素Cu的加入, 相结构由纯Zr的a-Zr单相转变为Zr-Cu合金的a-Zr和Zr2Cu双相. 相应地, 其吸氘达到饱和的时间逐渐延长, 由纯Zr的20 min增加到Zr-5%Cu的80 min和Zr-10%Cu的130 min, 吸氘后的纯Zr相结构为氘化物e, 而Zr-Cu合金相结构为e相、Zr2Cu和Zr7Cu10. 动力学机制方程拟合结果显示, 纯Zr吸氘过程受二维扩散机制控制, 而Zr-Cu合金吸氘过程受化学反应机制控制. Cu的加入改变了其吸氘机制, 从而降低了吸氘速率.

关键词 ZrCu吸氘动力学    
Abstract

With increasing demand for energy, nuclear fusion has attracted more and more attention. In fusion process, the most promising of fusion reactions is the fusion of deuterium and tritium. Thus, deuterium absorption has become a key issue. At present, the extensively used materials for storage and supply of deuterium are uranium beds. However, upon hydrogenation, uranium is easily disintegrated into fine powder, which causes many undesirable problems. It has been found that zirconium alloys can take as much deuterium atoms as that of uranium alloys but with a lower density and price, thus becoming a candidate material for deuterium carrier. However, zirconium alloys usually occur to crack after deuterium absorption, which badly restricts their application as a deuterium carrier. In order to minimize the cracking, Cu is chosen as an alloying element, expecting to minimize the cracking. In this work, the kinetic mechanisms of deuterium absorption in Zr-xCu (x=0, 5%, 10%, mass fraction) alloys were investigated based on experiments and kinetic function calculations. The results show that with the increase of Cu content, the microstructure transforms from the primary single a-Zr phase of the pure Zr to the a-Zr and Zr2Cu duplex phases of the Zr-5%Cu and Zr-10%Cu alloys. Correspondingly, the equilibrium time of deuterium absorption increases significantly from 20 min for the pure Zr to 80 min for the Zr-5%Cu alloy and to 130 min for the Zr-10%Cu alloy. After deuterium absorption, the phase of pure Zr is e deuteride while the phases of Zr-5%Cu and Zr-10%Cu are e deuteride, Zr2Cu and Zr7Cu10. The kinetic mechanisms of deuterium absorption in these alloys are found to be controlled by a 2-dimensional diffusion mechanism in the pure Zr, and by a chemical reaction mechanism in the Zr-5%Cu and Zr-10%Cu alloys. The addition of Cu changes the kinetic mechanisms of the Zr-xCu alloys, resulting in slowing down deuterium absorption rate. It is attributed that during deuterium absorption of Zr-Cu alloys, Zr2Cu also absorbs deuterium and forms intermediate phase, such as Zr2CuHx. Then the intermediate phase will discompose into Zr7Cu10 and ε deuteride.

Key wordsZr    Cu    deuterium absorption    kinetics
收稿日期: 2015-05-12      出版日期: 2015-11-10
基金资助:国家自然科学基金项目21171018 和51271021 资助

引用本文:

杨云,宋西平. 合金元素Cu对金属Zr吸氘动力学机制的影响*[J]. 金属学报, 2016, 52(1): 100-104.
Yun YANG,Xiping SONG. INFLUENCE OF ALLOY ELEMENT Cu ON KINETIC MECHANISMS OF DEUTERIUM ABSORPTION IN ZIRCONIUM. Acta Metall, 2016, 52(1): 100-104.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00256      或      http://www.ams.org.cn/CN/Y2016/V52/I1/100

图1  Zr-xCu合金的BSE像
图2  Zr-xCu 合金吸氘前后的XRD谱
图3  Zr-xCu 合金的吸氘动力学曲线及氘化物体积转化分数随时间的变化
图4  Zr-xCu合金吸氘过程中在二维扩散和化学反应机制方程拟合下的曲线
[1] Taylor N, Cortes P. Fusion Eng Des, 2014; 89: 1995
[2] Lupelli I, Murari A, Gaudio P, Gelfusa M, Mazon D, Vega J. Fusion Eng Des, 2013; 88: 738
[3] Hong B G. Fusion Eng Des, 2014; 89: 2493
[4] Pampin R, Davis A, Izquierdo J, Leichtle D, Loughlin M J, Sanz J, Turner A, Villari R, Wilson P P H. Fusion Eng Des, 2013; 88: 454
[5] Kanouff M P, Gharagozloo P E, Salloum M, Shugard A D. Chem Eng Sci, 2013; 91: 212
[6] Shugard A D, Buffleben G M, Johnson T A, Robinson D B. J Nucl Mater, 2014; 447: 304
[7] Bhattacharyya R, Mohan S. Renew Sust Energy Rev, 2015; 41: 872
[8] Ablitzer C, Le Guyadec F, Raynal J, Génin X, Duhart-Barone A. J Nucl Mater, 2013; 432: 135
[9] Totemeier T C. J Nucl Mater, 2000; 278: 301
[10] Le Guyadec F, Génin X, Bayle J P, Dugne O, Duhart-Barone A, Ablitzer C. J Nucl Mater, 2010; 396: 294
[11] Jat R A, Sawant S G, Rajan M B, Dhanuskar J R, Kaity S, Parid S C. J Nucl Mater, 2013; 443: 316
[12] Hu X X, Terrani K A, Wirth B D. J Nucl Mater, 2014; 448: 87
[13] Glazoffa M V, Tokuhiro A, Rashkeev S N, Sabharwalla P. J Nucl Mater, 2014; 444: 65
[14] Zheng J, Zhou X S, Mao L, Zhang H J, Liang J H, Sheng L S, Peng S. Int J Hydrogen Energy Mater, 2015; 40: 4597
[15] Lanzania L, Ruch M. J Nucl Mater, 2004; 324: 165
[16] Wongsawaeng D, Jaiyen S. J Nucl Mater, 2010; 403: 19
[17] Terrani K A, Balooch M, Wongsawaeng D, Jaiyen S, Olander D R. J Nucl Mater, 2010; 397: 61
[18] Zhao C, Song X P, Yang Y, Zhang B. Int J Hydrogen Energy Mater, 2013; 38: 10903
[19] Dou N N. Master Thesis, University of Science and Technology Beijing, 2014
[19] (窦娜娜. 北京科技大学硕士学位论文, 2014)
[20] Li Q, Chou K C, Jiang L J, Zhan F. Int J Hydrogen Energy Mater, 2004; 29: 843
[21] Dang J, Zhang G H, Chou K C, Reddy R G, He Y, Sun Y J. Int J Refract Met Hard Mater, 2013; 41: 216
[22] Li W H, Tian B H, Ma P, Wu E D. Acta Metall Sin, 2012; 48: 822
[22] (李武会, 田保红, 马 坪, 吴尔冬. 金属学报, 2012; 48: 822)
[23] Yoo H, Kim W, Ju H. Solid State Ionics, 2014; 262: 241
[24] Wang H, Prasad A K, Advani S G. Int J Hydrogen Energy Mater, 2014; 39: 11035
[25] Masanori H, Yukiko H, Kuniaki W. J Alloys Compd, 2009; 487: 489
[26] Filinchuk Y E, Yvon K. Inorg Chem, 2005; 44: 8191
[27] Kadel R, Weiss A. J Less-Common Met, 1979; 65: 89
[28] Couet A, Motta A T, Comstock R J. In: Comstock R J, Barbéris P eds., Zirconium in the Nuclear Industry: 17th International Symposium, West Conshonocken: ASTM International, 2015: 479
[1] 陈兵,高长源,黄娇,毛亚婧,姚美意,张金龙,周邦新,李强. β-(Nb, Zr)第二相合金在360 ℃去离子水中的腐蚀行为[J]. 金属学报, 2017, 53(4): 447-454.
[2] 史显波,徐大可,闫茂成,严伟,单以银,杨柯. 新型含Cu管线钢的微生物腐蚀行为研究[J]. 金属学报, 2017, 53(2): 153-162.
[3] 王晨充,张弛,杨志刚,苏杰,翁宇庆. 高Co-Ni二次硬化钢的设计准则与时效工艺分析[J]. 金属学报, 2017, 53(2): 175-182.
[4] 杨忠波,赵文金,程竹青,邱军,张海,卓洪. Nb含量对 Zr-xNb-0.4Sn-0.3Fe合金耐腐蚀性能的影响[J]. 金属学报, 2017, 53(1): 47-56.
[5] 毕宗岳,杨军,刘海璋,张万鹏,杨耀彬,田磊,黄晓江. TA1/X65复合板焊接工艺及焊缝组织和性能研究*[J]. 金属学报, 2016, 52(8): 1017-1024.
[6] 金帅,程钊,潘庆松,卢磊. 添加剂浓度对直流电解沉积纳米孪晶Cu微观结构的影响*[J]. 金属学报, 2016, 52(8): 973-979.
[7] 陈瑞,许庆彦,柳百成. Al-Mg-Si合金中针棒状析出相时效析出动力学及强化模拟研究*[J]. 金属学报, 2016, 52(8): 987-999.
[8] 郭巍巍,齐成军,李小武. 共轭和临界双滑移取向Cu单晶体疲劳位错结构的热稳定性研究*[J]. 金属学报, 2016, 52(6): 761-768.
[9] 赵时璐,张震,张钧,王建明,张正贵. 多弧离子镀TiAlZrCr/(Ti, Al, Zr, Cr)N梯度膜的微观结构与耐磨损性能*[J]. 金属学报, 2016, 52(6): 747-754.
[10] 沈琴,王晓姣,赵安宇,何益锋,方旭磊,马佳荣,刘文庆. Mn对钢中富Cu相和NiAl相复合析出过程的影响*[J]. 金属学报, 2016, 52(5): 513-518.
[11] 闫二虎,孙立贤,徐芬,徐达鸣. 基于Thermo-Calc和微观偏析统一模型对Al-6.32Cu-25.13Mg合金凝固路径的预测*[J]. 金属学报, 2016, 52(5): 632-640.
[12] 钟华,李传军,王江,任忠鸣,钟云波,玄伟东. 强磁场对定向凝固Al-4.5Cu合金微观偏析的影响*[J]. 金属学报, 2016, 52(5): 575-582.
[13] 胡小锋,杜瑜宾,闫德胜,戎利建. Cu的析出及其对FeCrMoCu合金阻尼性能和力学性能的影响[J]. 金属学报, 2016, 53(5): 601-608.
[14] 孙磊,陈明和,张亮,杨帆. Sn-Ag-Cu钎料焊接显微组织演化和性能研究[J]. 金属学报, 2016, 53(5): 615-621.
[15] 钟玉洁,戴洪斌,王平. 水合肼制氢Ni-Pt/La2O3催化剂研制及其反应动力学研究*[J]. 金属学报, 2016, 52(4): 505-512.