Please wait a minute...
金属学报  2016, Vol. 52 Issue (1): 100-104    DOI: 10.11900/0412.1961.2015.00256
  本期目录 | 过刊浏览 |
合金元素Cu对金属Zr吸氘动力学机制的影响*
杨云,宋西平()
北京科技大学新金属材料国家重点实验室, 北京 100083
INFLUENCE OF ALLOY ELEMENT Cu ON KINETIC MECHANISMS OF DEUTERIUM ABSORPTION IN ZIRCONIUM
Yun YANG,Xiping SONG()
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

杨云,宋西平. 合金元素Cu对金属Zr吸氘动力学机制的影响*[J]. 金属学报, 2016, 52(1): 100-104.
Yun YANG, Xiping SONG. INFLUENCE OF ALLOY ELEMENT Cu ON KINETIC MECHANISMS OF DEUTERIUM ABSORPTION IN ZIRCONIUM[J]. Acta Metall Sin, 2016, 52(1): 100-104.

全文: PDF(3491 KB)   HTML
摘要: 

通过实验测试及动力学机制方程拟合, 研究了放电等离子烧结Zr-xCu (x=0, 5%, 10%, 质量分数)合金吸氘动力学机制. 结果表明, 随着合金元素Cu的加入, 相结构由纯Zr的a-Zr单相转变为Zr-Cu合金的a-Zr和Zr2Cu双相. 相应地, 其吸氘达到饱和的时间逐渐延长, 由纯Zr的20 min增加到Zr-5%Cu的80 min和Zr-10%Cu的130 min, 吸氘后的纯Zr相结构为氘化物e, 而Zr-Cu合金相结构为e相、Zr2Cu和Zr7Cu10. 动力学机制方程拟合结果显示, 纯Zr吸氘过程受二维扩散机制控制, 而Zr-Cu合金吸氘过程受化学反应机制控制. Cu的加入改变了其吸氘机制, 从而降低了吸氘速率.

关键词 ZrCu吸氘动力学    
Abstract

With increasing demand for energy, nuclear fusion has attracted more and more attention. In fusion process, the most promising of fusion reactions is the fusion of deuterium and tritium. Thus, deuterium absorption has become a key issue. At present, the extensively used materials for storage and supply of deuterium are uranium beds. However, upon hydrogenation, uranium is easily disintegrated into fine powder, which causes many undesirable problems. It has been found that zirconium alloys can take as much deuterium atoms as that of uranium alloys but with a lower density and price, thus becoming a candidate material for deuterium carrier. However, zirconium alloys usually occur to crack after deuterium absorption, which badly restricts their application as a deuterium carrier. In order to minimize the cracking, Cu is chosen as an alloying element, expecting to minimize the cracking. In this work, the kinetic mechanisms of deuterium absorption in Zr-xCu (x=0, 5%, 10%, mass fraction) alloys were investigated based on experiments and kinetic function calculations. The results show that with the increase of Cu content, the microstructure transforms from the primary single a-Zr phase of the pure Zr to the a-Zr and Zr2Cu duplex phases of the Zr-5%Cu and Zr-10%Cu alloys. Correspondingly, the equilibrium time of deuterium absorption increases significantly from 20 min for the pure Zr to 80 min for the Zr-5%Cu alloy and to 130 min for the Zr-10%Cu alloy. After deuterium absorption, the phase of pure Zr is e deuteride while the phases of Zr-5%Cu and Zr-10%Cu are e deuteride, Zr2Cu and Zr7Cu10. The kinetic mechanisms of deuterium absorption in these alloys are found to be controlled by a 2-dimensional diffusion mechanism in the pure Zr, and by a chemical reaction mechanism in the Zr-5%Cu and Zr-10%Cu alloys. The addition of Cu changes the kinetic mechanisms of the Zr-xCu alloys, resulting in slowing down deuterium absorption rate. It is attributed that during deuterium absorption of Zr-Cu alloys, Zr2Cu also absorbs deuterium and forms intermediate phase, such as Zr2CuHx. Then the intermediate phase will discompose into Zr7Cu10 and ε deuteride.

Key wordsZr    Cu    deuterium absorption    kinetics
收稿日期: 2015-05-12     
基金资助:国家自然科学基金项目21171018 和51271021 资助
图1  Zr-xCu合金的BSE像
图2  Zr-xCu 合金吸氘前后的XRD谱
图3  Zr-xCu 合金的吸氘动力学曲线及氘化物体积转化分数随时间的变化
图4  Zr-xCu合金吸氘过程中在二维扩散和化学反应机制方程拟合下的曲线
[1] Taylor N, Cortes P. Fusion Eng Des, 2014; 89: 1995
[2] Lupelli I, Murari A, Gaudio P, Gelfusa M, Mazon D, Vega J. Fusion Eng Des, 2013; 88: 738
[3] Hong B G. Fusion Eng Des, 2014; 89: 2493
[4] Pampin R, Davis A, Izquierdo J, Leichtle D, Loughlin M J, Sanz J, Turner A, Villari R, Wilson P P H. Fusion Eng Des, 2013; 88: 454
[5] Kanouff M P, Gharagozloo P E, Salloum M, Shugard A D. Chem Eng Sci, 2013; 91: 212
[6] Shugard A D, Buffleben G M, Johnson T A, Robinson D B. J Nucl Mater, 2014; 447: 304
[7] Bhattacharyya R, Mohan S. Renew Sust Energy Rev, 2015; 41: 872
[8] Ablitzer C, Le Guyadec F, Raynal J, Génin X, Duhart-Barone A. J Nucl Mater, 2013; 432: 135
[9] Totemeier T C. J Nucl Mater, 2000; 278: 301
[10] Le Guyadec F, Génin X, Bayle J P, Dugne O, Duhart-Barone A, Ablitzer C. J Nucl Mater, 2010; 396: 294
[11] Jat R A, Sawant S G, Rajan M B, Dhanuskar J R, Kaity S, Parid S C. J Nucl Mater, 2013; 443: 316
[12] Hu X X, Terrani K A, Wirth B D. J Nucl Mater, 2014; 448: 87
[13] Glazoffa M V, Tokuhiro A, Rashkeev S N, Sabharwalla P. J Nucl Mater, 2014; 444: 65
[14] Zheng J, Zhou X S, Mao L, Zhang H J, Liang J H, Sheng L S, Peng S. Int J Hydrogen Energy Mater, 2015; 40: 4597
[15] Lanzania L, Ruch M. J Nucl Mater, 2004; 324: 165
[16] Wongsawaeng D, Jaiyen S. J Nucl Mater, 2010; 403: 19
[17] Terrani K A, Balooch M, Wongsawaeng D, Jaiyen S, Olander D R. J Nucl Mater, 2010; 397: 61
[18] Zhao C, Song X P, Yang Y, Zhang B. Int J Hydrogen Energy Mater, 2013; 38: 10903
[19] Dou N N. Master Thesis, University of Science and Technology Beijing, 2014
[19] (窦娜娜. 北京科技大学硕士学位论文, 2014)
[20] Li Q, Chou K C, Jiang L J, Zhan F. Int J Hydrogen Energy Mater, 2004; 29: 843
[21] Dang J, Zhang G H, Chou K C, Reddy R G, He Y, Sun Y J. Int J Refract Met Hard Mater, 2013; 41: 216
[22] Li W H, Tian B H, Ma P, Wu E D. Acta Metall Sin, 2012; 48: 822
[22] (李武会, 田保红, 马 坪, 吴尔冬. 金属学报, 2012; 48: 822)
[23] Yoo H, Kim W, Ju H. Solid State Ionics, 2014; 262: 241
[24] Wang H, Prasad A K, Advani S G. Int J Hydrogen Energy Mater, 2014; 39: 11035
[25] Masanori H, Yukiko H, Kuniaki W. J Alloys Compd, 2009; 487: 489
[26] Filinchuk Y E, Yvon K. Inorg Chem, 2005; 44: 8191
[27] Kadel R, Weiss A. J Less-Common Met, 1979; 65: 89
[28] Couet A, Motta A T, Comstock R J. In: Comstock R J, Barbéris P eds., Zirconium in the Nuclear Industry: 17th International Symposium, West Conshonocken: ASTM International, 2015: 479
[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[3] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[6] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[7] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[8] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[9] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[10] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[11] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[12] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[13] 杜宗罡, 徐涛, 李宁, 李文生, 邢钢, 巨璐, 赵利华, 吴华, 田育成. Ni-Ir/Al2O3 负载型催化剂的制备及其用于水合肼分解制氢性能[J]. 金属学报, 2023, 59(10): 1335-1345.
[14] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[15] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.