Please wait a minute...
Acta Metall Sin  1996, Vol. 32 Issue (2): 202-206    DOI:
Current Issue | Archive | Adv Search |
MECHANISM OF ANNEALING EMBRITTLEMENT OF AMORPHOUS Fe_(79)B_(16)Si_5 ALLOY
CHE Xiaozhou; SUN Baode; HU Gengxiang(Shanghai Jiaotong University; Shanghai 200030); CAO Xingguo(Luoyang Institute of Technology; Luoyang 471039); DAI Lizhi(Central Iron & Steel Research Institute; Ministry of Metallurgical Industry;Beijing 100081)(Manuscript received 1995-05-30)
Cite this article: 

CHE Xiaozhou; SUN Baode; HU Gengxiang(Shanghai Jiaotong University; Shanghai 200030); CAO Xingguo(Luoyang Institute of Technology; Luoyang 471039); DAI Lizhi(Central Iron & Steel Research Institute; Ministry of Metallurgical Industry;Beijing 100081)(Manuscript received 1995-05-30). MECHANISM OF ANNEALING EMBRITTLEMENT OF AMORPHOUS Fe_(79)B_(16)Si_5 ALLOY. Acta Metall Sin, 1996, 32(2): 202-206.

Download:  PDF(412KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Activation energies for the ductile-brittle transition, structural relaxation and crystallization of the amorphous Fe_(79)B_(16)Si_5 alloy have been determined. The relations of annealing embrittlement with structural relaxation and crystallization have been investigated.The activation energy for ductile-brittle transition is 125 kJ/ mol, which is close to the activation energy for the change of atomic interactions during structural relaxation (85kJ/ mol), but is much lower than that for the formation of α-Fe during the early stage of crystallization (374-399 kJ/ mol). It is apparent that the annealing embrittlement of amorphous Fe_(79)B_(16)Si_5 alloy is related to the atomic short range ordering during structural relaxation. And there is no relationship between the embrittlement behaviour and crystallization.(Correspondent: CHE Xiaozhou, post doctoral, Department of Materials Science, Shanghai Jiaotong University, Shanghai 200030)
Key words:  amorphous alloy      annealing embrittlement      structural relaxation      crystallization      activation energy     
Received:  18 February 1996     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1996/V32/I2/202

1ChiGC,ChenHS,MillerCE.JApplPhys,1978;49:17152CaoXingguo,LiJcM.ActaMetall,1985;33:4993LuborskyFE,WalterJL.JApplphys,1976;47;36484曹兴国.机械工程材料,1987:11(6):65KissingerHE.AnalyticalChemistry,1957;29:17026MazurinOU.JNon-crystSolids,1977;25:1297CbenHS.JNon-crystSolids,1978;27:2578GerlingR,SchimanskyFP,WagnerR.Inter,JRapidSolidification,1990;5:1379LiJCM.MaterSciEng,1988;98:46510DavisLA,DasSK,LiJCM,ZedalisMS.Inter.JRapidSolidification,1994;8:73
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[4] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[5] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[6] GUO Lu, ZHU Qianke, CHEN Zhe, ZHANG Kewei, JIANG Yong. Non-Isothermal Crystallization Kinetics of Fe76Ga5Ge5B6P7Cu1 Alloy[J]. 金属学报, 2022, 58(6): 799-806.
[7] LIU Shuaishuai, HOU Chaonan, WANG Engang, JIA Peng. Plastic Rheological Behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 Amorphous Alloys in the Supercooled Liquid Region[J]. 金属学报, 2022, 58(6): 807-815.
[8] LI Jinfu, LI Wei. Structure and Glass-Forming Ability of Al-Based Amorphous Alloys[J]. 金属学报, 2022, 58(4): 457-472.
[9] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[10] ZHANG Jinyong, ZHAO Congcong, WU Yijin, CHEN Changjiu, CHEN Zheng, SHEN Baolong. Structural Characteristic and Crystallization Behavior of the (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x High-Entropy-Amorphous Alloy Ribbons[J]. 金属学报, 2022, 58(2): 215-224.
[11] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[12] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[13] HAN Luhui, KE Haibo, ZHANG Pei, SANG Ge, HUANG Huogen. Kinetic Crystallization Behavior of Amorphous U60Fe27.5Al12.5 Alloy[J]. 金属学报, 2022, 58(10): 1316-1324.
[14] JIANG Jufu, ZHANG Yihao, LIU Yingze, WANG Ying, XIAO Guanfei, ZHANG Ying. Research on AlSi7Mg Alloy Semi-Solid Billet Fabricated by RAP[J]. 金属学报, 2021, 57(6): 703-716.
[15] JIANG Minqiang, GAO Yang. Structural Rejuvenation of Metallic Glasses and Its Effect on Mechanical Behaviors[J]. 金属学报, 2021, 57(4): 425-438.
No Suggested Reading articles found!